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ABSTRACT

The standard way to study conformational changes of biomolecular systems is
through Markov state modelling. Since a Markov state model (MSM) is built
under the assumption of well-separated timescales in the system’s dynamics, it
has some limitations for cases in which this condition is not satisfied. Therefore,
a new approach is needed to deal with these non-Markovian dynamics. In this
thesis, the quasi Markov state model ((MSM) proposed by Huang et al. [14-16]
is introduced and applied to different systems. It is derived from the generalized
master equation (GME) and includes the non-instantaneous response of the sys-
tem in a memory kernel.

As a demonstration of the different steps needed to build a qMSM, a six-state
toy model is investigated first. Out of a single transition count matrix and by
applying a good and a bad lumping projector, macrostate transition probability
matrices are obtained. These build the basis for the MSM and are used to calcu-
late the memory kernel for the qMSM. The MSM and the qMSM are compared
and validated by looking at the implied timescales and the Chapman-Kolmogorov
test. For good lumping, both models perfectly describe the dynamics, while for
bad lumping only the qMSM shows perfect agreement, indicating that qMSMs
are less influenced by a bad lumping of the microstates into macrostates than

MSMs.

These steps are replicated by applying them to the real biological systems HP35
and T4 lysozyme, for which MSMs were already built in previous studies [11,
17]. For the already well-understood system HP35, the qMSM shows very good
agreement in the Chapman-Kolmogorov test, while the MSM fails the test for
certain states. This outperformance of MSMs by the qMSM is also found when
reducing the length of the trajectory to test the stability of both models. In
contrast, for T4 lysozyme both models do not describe the dynamics perfectly,
although the qMSM clearly showed a better agreement than the MSM.
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| CHAPTER 1 |

INTRODUCTION

Proteins are the workhorses of biological systems, driving and sustaining the in-
tricate machinery of life’s processes. A human cell typically contains thousands
of different proteins, which are macromolecules consisting of an amino acid se-
quence [1]. This sequence defines the individual 3-dimensional structure of each
protein. With their ability to vary their structure in conformational changes,
e.g. folding [2] or ligand binding [3], proteins perform a variety of functions in
organisms [4]. To understand illnesses caused by proteins’ malfunctions or the
advantages of different drug designs, it is therefore not sufficient to know only the
structure of proteins. The dynamics are the key to the answer of the question:
how do proteins work?

To observe conformational changes of macromolecules, which take place within
a wide range of timescales (from picoseconds up to seconds), a high temporal
resolution on an atomic scale is desirable. Therefore, molecular dynamics (MD)
simulations are widely used as a complementary tool to experiments [4,5]. They
provide information about the fast motions of each atom in the system under
study for up to hundreds of microseconds [6].

The resulting trajectory of atomic coordinates can be analysed with the aim of
breaking the high dimensional process down to transitions between a few meta-
stable states representing specific conformations. These states can be obtained
by applying dimensionality reduction algorithms, that provide a small subset
of variables, and clustering methods identifying geometrically and dynamically
close regions in the resulting free energy landscape. Each time frame of the MD
simulation data can be assigned to one of these states, resulting in a state tra-
jectory. The challenge that comes with coarse-graining the complex molecular
dynamics is to construct conformational states such that a timescale separation
between the fast intrastate and the slow interstate processes is obtained. If this
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separation is satisfied for a specific time step, called lag time, the states’ evol-
ution can be seen as memory-less or Markovian, i.e. the current conformation
only depends on the previous step but not on the system’s history. This allows
creating a so-called Markov state model (MSM) [7—10]. An MSM is based on
a transition probability matrix, which can be directly obtained from the state
trajectory. However, the case of a clear timescale separation is in practice hard
to achieve. Thus, MSMs often just qualitatively reproduce the process of interest
but can (partially) fail to provide quantitative predictions [11].

For non-Markovian processes, the generalized master equation (GME) [12, 13]
provides a framework to determine a time-dependent function, called memory
kernel, considering the non-instantaneous response of the system. Depending on
the quality of the timescale separation, the kernel usually decays fast. It builds
the basis for a new model approach, the quasi Markov state model (QMSM), pro-
posed by Huang et al. [14-16], which predicts time-dependent transition prob-
abilities directly from the GME. The memory kernel lifetime and the lag time
are directly connected to the length of MD simulation needed for the respect-
ive model to accurately represent the system. Since the memory kernel lifetime
is usually significantly shorter than the lag time, qMSM promises the need of
less MD simulation data. Moreover, by calculating the memory kernel and the
transition probability matrix explicitly from the GME, the qMSM does not sig-
nificantly exceed the costs of building an MSM.

In this thesis, MSMs and qMSMs will be directly compared by applying them to
different systems. First, a simple six-state toy model reproduced from Huang et
al. [14] will serve as a step-by-step demonstration on how to build a gMSM out of
a Markovian trajectory. Subsequently, the widely studied protein HP35 will be
investigated [17,18]. As MSMs already provided good results for the system, it
serves well for a quantitative comparison to a qMSM. The used state trajectory
is taken from a recent work of Nagel et al. [17]. For HP35, there will also be an
analysis with shortened state trajectories, assessing how the models would turn
out for a reduced MD simulation length. Finally, T4 lysozyme is studied to check
how well a QMSM performs for a clearly non-Markovian trajectory [11,19].
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THEORY AND METHODS

2.1 Proteins

Proteins are linear polymer molecules which consist of chained up units called
amino acids. These units are also named residues because when two amino acids
link together covalently, typically one oxygen and two hydrogen atoms of the ori-
ginal molecule are lost in the form of water. Thus, residues are the monomers in
the polymeric chain. The amino acid’s basic structure (main chain) is an amino
group (NHs) at one end and a carboxylic acid group (COOH) at the other, linked
by a C,-atom [20]. The main chain builds the backbone of the protein. A side
chain bonds covalently at the C,-atom [1], and the type of chain defines the
type of amino acid. There are 20 different standard amino acids of which all
18000 types of protein molecules in a human cell are composed of. On average,
a protein has around 500 residues which form a unique sequence defined as the
primary protein structure.

The secondary structure types include mainly the a-helix and the 3-sheet, which
form at smaller parts of the amino acid chain [21]. In an a-helix, the backbone
spirals around its long axis and hydrogen bonds form between every fourth amino
acid. The [-sheet consists of two or more strands, which can be parallel or anti-
parallel, connected by many hydrogen bonds. About 60% of the residues parti-
cipate in a-helices and (-sheets. Secondary structure and side chain interactions
result in a specific 3-dimensional arrangement, the tertiary structure [1]. There
are also proteins which consist of several subunits. The spatial arrangement of
these polymer chains is seen as the quaternary structure [22].

Because of the amino acids side chains interacting and the Brownian motion of
solvents, proteins exhibit temperature-driven structural dynamics. The interac-
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tions depend on the type of side chain, which are classified as polar or non-polar.
Therefore, the polarity defines the kind and the strength of bonding between two
residues. Proteins can also have an unfolded or denatured structure, i.e., they
exist as a chain with many conformations (high entropy). During the folding
process, the entropy decreases and the protein ends up in its singular native
structure.

The relationship between the sequence and the native structure is called the
folding code [1]. It is unique for every protein type, since the composition of
amino acids determines the forces acting in the folding process. The native
structure can vary depending on the function it should perform. However, the
protein’s function can often not be solely derived only from the 3-dimensional
structure. Often the function results from transitions between structures, which
can affect small or large conformational changes. Therefore, the protein’s motion
is also a part of the causal chain [1]

SEQUENCE — STRUCTURE — MOTION — FUNCTION.

Proteins perform a variety of functions within an organism, including DNA rep-
lication, providing structure to cells, transporting molecules or acting as enzymes
and antibodies [22]. To understand the dynamics underlying these very import-
ant processes, especially for medical purposes, is of huge interest. The goal is to
gain insight into protein motions so that illnesses due to proteins’ malfunctions
can be cured and drugs can be designed to be more precise and effective.
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2.2 MD Simulations

Since a protein is built of numerous fast moving atoms, one wants a good time
resolution as well as an atom-scale spatial resolution to capture the movement
of every single atom. Standard experiments (like nuclear magnetic resonance or
mass spectroscopy) may provide a detailed structural characterization but are
typically limited in their time resolution. As a complementary tool, molecular
dynamics (MD) simulations are widely used to overcome this challenge [23,24].
They are a computer simulation technique which allows looking at every single
atom of the investigated system and their temporal evolution in detail. For that,
the protein’s starting structure has to be known, which can be obtained, e.g. from
crystallization experiments [25]. The protein is then placed in a simulation box
with periodic boundary conditions surrounded by a solution (typically water). To
get the interactions between the atoms of the system, a potential energy function
is defined, which is derived from the molecular structure (atoms composition and
positions). The different kinds of interaction are combined in a force field Uy
which by default consists of a term considering local interactions Upongeq and one
for long range interactions Uyon—bonded [20]

Utot = Ubonded + Unon—bonded' (21)

The first term includes bond stretching, bond bending and bond torsion, while
the second, non-bonded term considers the Coulombian and the Lennard-Jones
interactions. Out of that, the force which every atom undergoes can be determ-
ined as

Fi = Vz [Ubonded(R) + Unon—bonded(R)] 5 (22)

where R = (ry,...,ry) includes the Cartesian coordinates of all N atoms. Nu-
merical integration methods such as Euler or Verlet are used to integrate over
time steps shorter than the fastest motion in the molecules, iteratively, provid-
ing a trajectory of the atoms in the protein. One data point of the trajectory
includes all the atom’s Cartesian coordinates at the respective time frame.

Since macromolecular processes happen on a wide range of timescales (from a
few picoseconds up to seconds), one usually strives for time resolutions of a few
femtoseconds to capture all relevant dynamics. This makes long MD simulations
(up to a few seconds or longer) computationally very expensive. A more real-
istic and common dimension is an MD simulation length of a few hundreds of
microseconds [6].
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2.3 Markov State Models

Understanding complex configurational changes directly by looking at MD sim-
ulation data is challenging [27]. Biomolecular processes such as the folding of
proteins or ligand binding are therefore often described as stochastic processes
happening on a slower timescale than single atom motions. A common way of
visualizing the dynamics is by looking at the free energy landscape along some
chosen reaction coordinate x [28]

AG(x) = —kgT'In P(x), (2.3)

where T is the temperature and P(x) the probability distribution for the co-
ordinate. Regions of low energy represent metastable states and the transitions
between them describe the stochastic and memory-less evolution of the process.
The relevant slow (interstate) processes are thus separated from the fast (in-
trastate) dynamics. The fast processes within the metastable states allow the
system to reach thermodynamic equilibrium before transition to another state.
Therefore, the evolution of the variable x only depends on the current location,
not on its history. The idea of Markov state modelling is to coarse-grain the
complex molecular dynamics by defining such metastable states and transitions
between the states, which qualitatively describe the biomolecular process.

The workflow to obtain a Markov State Model (MSM) out of MD simulation
data usually includes the following steps:

1. Choosing input coordinates, to describe the internal motions of interest

2. Dimensionality reduction, to identify collective variables essential for the
process

3. Clustering, to define metastable states
4. Calculating a transition probability matrix (TPM) as the basis of the MSM

5. Defining a lag time, for which the dynamics are Markovian

Choosing Coordinates

Simply using Cartesian coordinates (provided by MD simulations) as input fea-
tures is not convenient since they depend on the axial and the spatial orientation
of the protein, i.e., they describe the overall motion as well as the internal mo-
tion, while one is usually interested in the latter, and separating them afterwards
is unfavourable. In addition, with Cartesian coordinates, the number of variables
is very high (3N for a number of N atoms). That is why usually the protein’s
coordinates are transformed into a set of internal coordinates which can be again
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multidimensional like the Cartesian coordinates (including all three spatial ori-
entations), but one-dimensional variables such as distances between, e.g. pairs
of C,-atoms, or dihedral angles are preferred. A good choice of coordinates is
very important because some are more advantageous for describing the looked
at process than others [28,29]. Moreover, different coordinates can be suitable
depending on the system .

Dimensionality Reduction

Even with the change from multi- to one-dimensional and external to internal
coordinates, one faces a high number of dimensions (equal to N in the case of
one-dimensional coordinates), while many of the variables are not really essential
for the dynamics of interest [30]. To further reduce the dimension reasonably
by choosing so-called collective variables, different algorithms can be used, like
principal component analysis (PCA) and time-lagged independent component
analysis (tICA).

PCA is a dimensionality reduction method that projects the MD simulation
data points in the direction of their maximum covariance [31]. Therefore, in-
stantaneous linear correlations of the variables are removed by diagonalizing the
correlation matrix. Projecting the coordinates on the eigenvectors of that mat-
rix, sorted by decreasing eigenvalues, provides the principal components. The
first components represent the largest covariance of the data [17]. An altern-
ative dimensionality reduction method is tICA which maximizes the timescale
instead of the covariance [1]. Usually, the goal is to end up with < 10 variables
as input features for the clustering algorithm. With dimensionality reduction,
one gets rid of noise while preserving as much information as possible. For a
good choice of variables, the free energy landscape visualizes the pathway of the
investigated process. In the case of 10 variables, one has a 10-dimensional free
energy landscape.

Clustering

The selected variables are then fed into an algorithm that clusters the MD sim-
ulation data into metastable states. To do so, again different methods can be
used. The challenge is to determine the energy landscape barriers separating one
state from another as precisely as possible. Since a system always strives for the
lowest free energy, these local maxima are, in contrast to the energy minima,
very low sampled. In general, there are two types of clustering: geometrical and
dynamical.

The most common methods for geometrical clustering are k-means and robust
density based clustering (RDC). k-means starts with placing k& centroids ran-
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domly in the free energy landscape [32]. Iteratively, all data points are assigned
to the closest centroid, forming clusters. After every step, the centroids position
is changed into the current centre of the cluster. The algorithm stops after less
than a chosen threshold number of data points are reassigned to a new cluster and
the clusters at that point are then defined as states. The drawback of k-means
is that the clusters are separated at the mean distance between the centroids. In
that way, the energy barriers are possibly not reproduced correctly, leading to a
bad timescale separation between intrastate and interstate transitions.

RBC is an alternative geometrical method which solves this problem [33-35]. It
computes the density of points within a radius R around each point of the tra-
jectory and estimates the free energy. In that way, the minima of the free energy
landscape can be identified. By subsequently increasing the energy threshold,
metastable clusters can be defined as states which are separated by their local
energy barrier, which are often significantly more well-defined than the ones res-
ulting from k-means. One ends up with a set of metastable states and each time
frame of the MD simulation data can be assigned to one of these states, resulting
in a state trajectory.

When using geometrical clustering, a larger set of states results in a better res-
olution of each state. Usually one ends up with a few hundred states, called
microstates, providing all relevant information. But by increasing the amount
of states, the dynamics of the applied model will be harder to understand from
the biological perspective. In addition, numerous states increase the probability
of one state being split into many lower populated ones, which leads to worse
sampling. Since the aim is not to investigate the free energy landscape as de-
tailed as possible but to gain some qualitative information about conformational
changes, the dynamical information obtained from clustering is used to reduce
the number of states even further. Dynamical clustering algorithms are used to
define a set of macrostates which are composed of dynamically close microstates.

The most probable path (MPP) lumping algorithm makes use of the trans-
ition probabilities obtained from the state trajectory [36]. For the first step,
a threshold value @, is chosen. All states with self-transition probability lower
than Q. are reassigned to the state which they most probably jump into.
With every step, the threshold is increased until one obtains the desired amount
of states (in general less than 20). MPP can be visualized with a dendrogram,
where branches starting from each microstate on the x-axis merge together with
increasing Qi (y-axis).

Another common dynamical clustering method is Perron-cluster cluster analysis
(PCCA) which deals with the Perron eigenproblem [37]. The Perron eigenvalue
Ao = 1 (only for detailed balance) is the largest eigenvalue of the transition
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probability matrix (see section (2.3)) corresponding to the equilibrium conform-
ation (the slowest timescale). PCCA first merges all microstates into one single
macrostate and separates them iteratively based on the next slowest right eigen-
vector, so the kinetically most diverse macrostates are broken down into smaller
states [7]. Dynamical clustering provides a set of macrostates and a macrostate
trajectory out of the microstate one, where simply all microstates are assigned
to a few different macrostates.

There are many possibilities of combining dimensionality reduction and cluster-
ing algorithms, which partly lead to divergent results [29]. For every system, one
starts anew to discuss the right choice and research in improving and developing
new methods goes on.

Transition Probability Matrix

The obtained state trajectory allows determining a so-called transition probab-
ility matrix (TPM). In order to do so, one needs to simply count all transitions
between the different states for a chosen time step, called lag time 7 [38]. The
transition count matrix can be written as an M x M matrix C(7), where M is
the number of states and the entries Cj; are the number of transitions from state
1 to state j. The transition probabilities between the states are then calculated
by row-normalizing C
Ci;(7)
T (1) = 24
i5(T) S () (2.4)
where T;; is the probability to transition to state j when starting in state ¢ after
a lag time 7. The diagonal elements represent the self-transitions, i.e., the prob-
ability to stay in the current state. The TPM is the basis of an MSM.

For processes in thermal equilibrium, one finds so-called detailed balance. This
means, that for every transition from state ¢ to state j there is also a back-
ward transition and the states dynamics satisfy the detailed balance condition,
expressed via the equilibrium populations m; as

Wkal = Wlﬂk. (25)

For poor sampling, it can happen that detailed balance is not satisfied. In that
case, one ends up with directed evolution as for non-equilibrium processes, where
the system is externally driven out of its equilibrium conformation.

Since the dimensionality reduction and clustering methods usually do not provide
perfectly separated timescales, one can not randomly choose the lag time for the
TPM, that the MSM is build on. To obtain an evolution of the TPM that is
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Markovian from one discrete time step to the next, the time step has to be
coarse grained, meaning that it has to be slower than some critical value 7. For
Markovian processes, the Chapman-Kolmogorov equation holds [38]

T(ntr) = T(7r)", (2.6)

with n € N. The Chapman-Kolmogorov equation validates the MSM and
provides a simple way of propagating T(77) such that 7, defines the time resol-
ution of the resulting MSM. It states that the transition probability at the time
nty, after one step is equal to the transition probability at 7, after n steps.

From the TPM, one can directly extract other useful information, such as the
relaxation time, also called implied timescale (ITS), which defines the time a
system needs to find its way back to its equilibrium state. A system is Markovian
when the relaxation time stays constant after some time 7. Hence, ITS can
be used for the determination of 7. For this, one usually calculates the ITS
according to [7]

-7

In X\ (1)’

ITSi(r) = (2.7)

where 7 is a range of lag times and \; are the eigenvalues of the TPMs which are
sorted decreasingly. One finds the first eigenvalue corresponding to the equilib-
rium condition with a value Ay = 1 (Perron eigenvalue) for every time step. The
second-highest eigenvalue, \;, corresponds to the slowest process of the system
and is used to derive 7y..

With the Chapman-Kolmogorov equation, the relaxation time for a lag time nry,
should equal the relaxation time for 77 in the Markov case [7]

—NnTy, —NnTy, —NnTy, —TL

" In Xi(nTr) " In Xi(Tp)™ -

ITS;(11) (2.8)

~ nln (1) " In (1)

So the proper lag time for the MSM is reached as soon as the relaxation time
does not vary with 7 anymore. For a perfectly Markovian trajectory, where
71, = 1 frame, the implied timescale would have a constant value.

Since the lag time is the minimal time step describing a Markovian evolution,
the MD simulation data on which the model is build needs to span at least
this time 7. A shorter simulation would not sufficiently capture the relevant
slow transition dynamics and it would not be possible to obtain a representative
MSM.
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Estimation of the Macrostate TPM

As already mentioned, the microstate TPM, can be obtained by determining
a transition count matrix for the respective trajectory (equation (2.4)). When
calculating the macrostate TPM in the same way, local equilibrium of the system
is assumed, which can be expressed with the equilibrium populations 7; and II;
of the micro- and the macrostates respectively [39]

Z Mz’ﬂTz’ =TIy, (2~9)

icl,jeJ

where M;; is the transition probability from microstate ¢ to j and 77 the trans-
ition probability from macrostate I to J. By rearranging equation (2.9), the
macrostate TPM can be obtained as a projecting of the microstates transition
probabilities onto a reduced macrostate space

T = XYMAT, (2.10)

where the aggregation matrix A includes the information of the lumping

1 if ¢
A, =t iteed (2.11)
0 else

and matrix X represents the weighting by the equilibrium populations, defined
as

X, — {m/HI ite e J (2.12)

0 else

Both A and X are M x m matrices, where M is the number of macrostates and
m the number of microstates.

Another approach was formulated by Gerhard Hummer and Attila Szabo, which
works also for non-equilibrium systems [39]. When written as matrix multiplic-
ation, the resulting macrostate TPM looks as the following

T= I[M +Hmacr017]\14 - Dmacro (A (Hm + HmiCrO]‘Zm - M)il

DmicrOAT> ' (213)
where 1, is an x-dimensional identity column-vector and I, the x-dimensional
identity matrix. Do and Dyaco are matrices with the equilibrium popula-
tions of the micro- and macrostates on their diagonal, respectively. Il ;.0 and
IT, .cro are therefore m- and M-dimensional column-vectors with m; and II; as
their elements.



16 CHAPTER 2. THEORY AND METHODS

In this thesis, all models are built on macrostates TPMs obtained with the
first method, assuming local equilibrium. For HP35, the plots resulting for the
analysis using the Hummer-Szabo projection can also be found in the appendix

(2).
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2.4 Generalized Master Equation

In practice, the state trajectories usually do not describe a memory-less evol-
ution, therefore often high lag times have to be chosen for the MSM to give
qualitative results. But with increasing lag times, information about faster pro-
cesses are lost and more data from MD simulation is needed, which increases the
computational costs. Markovian conditions can also be reached when selecting
a higher amount of states, but with more states the results will be harder to
understand from the biological perspective. To show how to extend the simple
Markov scheme by considering memory, the exact equation of motion is derived
here, following [12—14].

The determination of the time evolution of physical ensembles is provided by the
Liouville equation [40]

op B

where L is the Liouville operator, H the Hamilton operator and [A, B] the Pois-
son brackets. It is a statistical classical mechanics equation describing the time
evolution of the probability density p(x, p,t) inside the phase space and can be
solved by

p=e“p(t=0). (2.15)

While the Liouville equation describes the motion of all molecules in a high-
dimensional phase space, slow dynamics like conformational changes can be of-
ten well described by some collective variables, i.e., they take place in a lower-
dimensional manifold. One option to create an equation of motion for the collect-
ive variables is the projection operator technique, separating the relevant slow
processes from the fast processes. Here, the technique formulated by Sadao Na-
kajima and Robert Zwanzig is shown [12,13]. It begins with writing the density
distribution into two projections as p = (P + Q)p, where @ = 1 — P and P
projects onto the relevant part of the system. The goal is to build an equation
of motion for P. With this purpose, the Liouville equation is rewritten as

) op

Op,—p P _ 2.1
5 PP ="P 5 =PLPp+PLYp, (2.16)
00,=0°%2— 0rop+orp (2.17)

by making use of the linearity of the Poisson brackets. With the solution ansatz
for the Liouville equation (2.15), the above equation (2.17) can be solved by

t
Qp = %1 Qp(t = 0) + / e QLPp(t —t)dt, (2.18)

0



18 CHAPTER 2. THEORY AND METHODS

which is easily verified by writing the function inside the integral as a derivative

t t
/ e QLPp(t —t)dt' = / e QLPeF ) p(0)dt

0 0

t
_ / d (e%f Qe“t—t’)) o(0) (2.19)
0
t
= — 9 Qet] p(0) = Qp — €2 Qp(0).

Qp can be then inserted in equation (2.16) and the Nakajima-Zwanzig equation
results

t

%Pp = PLPp + PLZQp(0) +PL / e QLPp(t — t)dt . (2.20)
=0 0

If at the initial time t = 0 the system is in equilibrium, where the sum over
all thermal fluctuation is zero, ) will be also zero such that the projector P
is the identity at the initial time. With this assumption, the inhomogeneous
second term of the Nakajima-Zwanzig equation vanishes. Therefore, the density
operator at time zero will be written as peq in the following expressions. The
resulting equation of motion (2.20) consists of an unperturbed term describing
the raw dynamics of the collective variables and a perturbed one considering the
impact of all other degrees of freedom.

To turn the Nakajima-Zwanzig equation (2.20) into an equation of motion for
metastable states, one chooses a matrix-based formulation, where the entries of
each matrix represent the transitions between the states. For a system described
by a set of selected variables x with M states, the projector P is determined
as [14]

P = Z X (%) peq(x, P)) 7y (x5(x) | (2.21)

where peq is the equilibrium probability distribution and 7; the equilibrium pop-
ulation of state j. With the orthogonal indicator functions

1 if x is in configuration j
M:{ (2.22)

0 else

and the bracket operation as the ensemble average over the equilibrium distri-
bution for the entire system, m; can be constructed as

«mmwmxm:/n®mmem@ﬁ=@m (2.23)
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Before determining the relevant matrices, the Nakajima-Zwanzig equation is nor-
malized by the equilibrium probability distribution peq

t
%Pe_u = PLPe" + PL / eLtQLPeF = qy. (2.24)
0

Out of this equation, the transition probability matrix (TPM) can be identified

T = Pe*, (2.25)

where Tj;(t) = (x;(x) |e“] Xj(X)peq(x)); !, Furthermore, PL can be written
as the derivative of the TPM at the starting time by deriving T and setting
t = 0 such that T(0) = PL. The second term of equation (2.24) describes
the fluctuations’ impact on the relevant slow dynamics, which is defined by the
so-called memory kernel

K = (xi(x) ‘ﬁegﬁtQﬂ peq(x))wj_l. (2.26)

By using the definitions of T, T(0) and K, the commonly used formulation of
the generalized master equation (GME) can be expressed

T(t) = T(0)T(t) + /t K(T)T(t — 7)dr. (2.27)

The convolution integral can be interpreted as a weighting of the TPM by the
memory kernel. The value of K at time 7 describes how much T(¢t — 7) affects
the resulting values. In other words, it indicates how the conditions at a previous
time ¢t — 7 influence the evolution of the system at time t.

Since the TPM contains all information about the system’s dynamics of the
reduced state space, it can be used to determine the probability of finding the
system in a certain state at a chosen time ¢ for an initial condition P(0) of
interest [14]

P(t) = T(t) P(0), (2.28)

where P is an M-dimensional column-vector with M being the amount of states
and P(0) has unitary norm describing the states’ relative contributions at the
initial time. Due to the idempotency of the projector (P? = P per definition [41])
the initial TPM is given by T(0) = I, where I, is the M x M identity matrix,
validating equation (2.28).
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Markov Limit

For the sake of completeness, the bridge between the GME and the master equa-
tion as the underlaying equation of motion of an MSM is build in the following.

For Markovian dynamics, the memory kernel decays infinitely fast in comparison
to the characteristic timescale of the projected dynamics, yielding K(t) —
Ko 6(t) [14]. Only for ¢ = 0 the memory kernel has a value Ky. With this
so-called Markovian condition (or Markov limit), the equation of motion (2.27)
changes into

Tasui(t) = (T(()) + ;co) Tasu(t), (2.29)

named master equation (ME). It can be solved by Tygu(t) = e(T@+Ko) T(().
For any time step At the Markovian TPM results in

Tasu(t 4+ At) = TOFRIA P (1), (2.30)

where e(TO+K0)AL — ((T(O)+K0)AL () = Ty (At) since the initial TPM is the
M x M identity matrix. This formulation allows rewriting equation (2.30) in the
common MSM notation based on equation (2.28)

P(t + At) = Tusu(t + At)P(0)
= Tysni(A) T ()P (0) (2.31)
= Tysu(At)P(2).

For the coarse-grained time step At = 7 of an MSM, the Champman-Kolmogorov
equation (2.6) can be directly derived from equation (2.30)

TMSM(TLTL) — G(T(O)-HCO)TWL T(O)
— (e(T(O)-HCo)TL T(()))n (2.32)

= TMSM(TL)n-
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2.5 Quasi Markov State Models

The quasi Markov state model (QMSM), proposed by Huang et al. [14-16] is
directly build from the GME and therefore provides time-dependent state trans-
itions considering the memory of the system. The following section provides a
step-by-step instruction on how to obtain a qMSM with using data that would
normally be used to build an MSM.

Usually, in a biomolecular system, interstate processes evolve on a much faster
timescale than the investigated configurational changes. Therefore, the value of
the memory kernel’s lifetime 75 is significantly smaller than the characteristic
timescale of the projected dynamics. In this case, the GME (2.27) can be slightly
adjusted by changing the upper limit of the convolution integral because K(7 <
) = 0:

T(t) = TO)T () + / M T — ) (2.33)

The memory kernel I can then be obtained by inverting this equation and using
the left Riemann sum to discretize the convolution of the memory kernel and the
transition probability matrix, providing

T(nAt) — EO) T(nAt) ;1 K(mAL) T((n —m)At),  (2.34)

K(nAt) =

where ¢t = nAt for n > 1. Such discretization can be done here because for the
investigated systems only discrete time steps At are used. Thus, K is completely
defined by the TPM and its derivative [14]

T((n+ 1)At) — T(nAt)
At '
In the above equations (2.34, 2.35) T(nAt) = Typ(nAt) is the transition probab-
ility matrix directly obtained from MD simulation data through the count matrix
for each time step (equation (2.4)). With equation (2.34) the memory kernel at
t = 0 is undetermined. One has to be careful that this is taken into account when

integrating the generalized master equation to obtain the time-dependent TPMs.

T(nAt) ~

(2.35)

For a better understanding of the memory kernel, the first term of equation
(2.341) is rewritten using the definition of the derivative (2.35)

T(nAt)—T(0) T(nAt)
[T((n + 1)At) — T(nAt)]
[T((n + 1)At) — T(nAt)]

(T(At) — I) T(nAt)] (2.36)
[T(At) T(nAt) — T(nAt)).
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In the Markovian case, T((n+1)At) = T(At)"™! = T(At) T(nAt) (using equa-
tion (2.6)), so the memory kernel becomes zero for the first (and all following)
time steps. For the non-Markovian case, the difference (2.36) increases with time
but is corrected by the influence of previous memory kernel values (second term
of equation (2.34)), leading to a general decay of the kernel. How fast a single
element K;; (representing the memory of the transition from state ¢ to state j)
decays depends on the quality of the timescale separation between intra- and
interstate dynamics after clustering.

Finally, one needs to determine the memory kernel lifetime 75 for the upper limit
of the convolution integral of the GME (2.33). To obtain the kernel lifetime one
can simply look at the evolution of the memory kernel elements K;;. Some will
decay faster than others, since the local energy landscape looks different for all
states. So Tx is chosen as the time at which all kernel elements have decayed

to zero. Another way of determining 7x is to calculate the mean integral of the
memory kernel (MIK) [14]

N 2

MIK(t) :% > ( /0 t ICM(t’)dt’) : (2.37)

ij=1

which converges to a stable value if there is no variation of the elements, and
therefore indicating the time when all memory kernel elements have decayed,
thus, the memory kernel lifetime 7.

To finally obtain time-dependent TPMs for the gMSM, the GME (2.33) is solved
and integrated for every time t = nAt (n > 1), iteratively

. . min|7g,t]
TqMSM (t) = T(O)TQMSM(t) -+ / ,C(T)TQMSM(t — T)dT. (238)
0

One starts with the first matrix directly obtained from the MD simulation data
T sm(At) = Typ(At) and uses the derivative at ¢ = 0, T(0) = Tyup(0). For
discrete time steps, the integral can be again written as a Riemann sum.

Since the memory kernel lifetime defines the time when the fast intrastate dy-
namics do not affect the relevant slow conformational processes anymore (K(t >
TK) = 0), Tk is linked to the minimal length of MD simulation needed to build
an accurate qMSM. As the qMSM does not try to find a Markovian description
for the studied dynamics, its time resolution is not limited to a lag time, so usu-
ally At = 1frame of the state trajectory is chosen as the time interval for the
propagation.
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2.6 Validating the Models

Once one has obtained a model, this should be validated in order to verify that
it accurately reproduces the dynamics under study.

For the validation of an MSM, the ITS (equation (2.7)) can be used. For a
Markovian model, the timescales should converge to a constant value, so that
they do not depend on the chosen lag time after a certain time 7. In other
words, the relaxation time of the system as an intrinsic physical property should
not depend on the model.

Furthermore, the Chapman-Kolmogorov test is an illustrating tool to validate
the quality of a model. It shows the evolution of the self-transition probability
of each state when starting in that state for the dynamics predicted by the ap-
plied model. The values directly obtained from the MD simulation data serve
as reference. In the Chapman-Kolmogorov equation (2.6), the left term refers to
the MD simulation data, on which the model is built and the right term to the
MSM, where the propagation is performed by simple matrix multiplication. A
good agreement of the MD- and MSM-curves indicates that the model describes
accurately a Markovian behaviour. An MSM is constructed in such a way that
the evolution of the self-transition probability of a certain state has the same
behaviour for every chosen lag time: the curves are just shifted in time and
therefore decay faster or slower because of different timescales. When plotting
the transition probabilities obtained from the qMSM, they will match the MD
reference well by construction, at least up to the kernel lifetime, because of the
way the kernel is calculated. All further predicted dynamics are what reveals
how well the QMSM describes the studied dynamics.

Related to the Chapman-Kolmogorov test, one can calculate the evolution of the
states” population probabilities for different initial conditions out of equation
(2.28). When plotting all the states evolutions together for one initial state,
the result provides an outlook on probable paths the system takes through the
states. This can also be used for the validation of the models, as equation (2.28)
uses the TPMs to determine the states’ population probabilities. Therefore, one
can build 'kinetic plots’ with the reference TPMs directly obtained from MD
simulation data and with the TPMs of the respective models.
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INVESTIGATED SYSTEMS

After performing the qMSM procedure to a six-state toy model, its performance
on actual biological systems will be investigated.

3.1 HP35

The first system is the NLE-NLE mutant of the villin headpiece HP35, a small
subdomain of a chicken villin. The backbone of HP35 consists of 35 amino acids
which form three a-helices (residues 3 to 10, 14 to 19 and 22 to 32) in the folded
conformation. Since it is a small and fast folding protein, many folding events can
be reproduced in a single MD simulation [42-44]. The here used state trajectory
was obtained by Nagel et al. [17] and is based on the 300 us-long MD simulation
by Piana et al. [18], which includes several folding events. As input features, they
chose contact distances defined according to the following: 1. The two residues
are three residues apart from each other, 2. The distance between the closest non-
hydrogen atoms of two residues is shorter than 4.5 A, 3. The so-defined contacts
are populated at least 30 % of the simulation time. These criteria led to a final set
of 42 native contacts. With PCA as dimensionality reduction method, the first
five principal components were found to describe 80 % of the total correlation.
By applying RDC with a radius of R = 0.124, a set of 522 microstates was

25
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obtained, which were further clustered into 12 metastable macrostates by using
MPP lumping with a metastability threshold of Qi = 0.5, [29]. The states were
then ordered by decreasing fraction of native contacts, i.e., state 1 is the native
state, where all contacts are formed and state 12 is the completely unfolded one,
seen in figure 3.1.

(a) (b)

Figure 3.1: Rendering of HP35 in its crystal structure. (a) The native structure and
(b) the completely unfolded conformation. The residues that form the three a-helices
are shown in turquoise.

3.2 T4 Lysozyme

The second investigated system is the 154-residue enzyme T4 lysozyme [45-47].
It destroys bacterial cell walls with a mouth like open-close motion and it has a
two-domain structure with ten a-helices and one S-sheet in its folded conforma-
tion, shown in figure 3.2. The used macrostate trajectory built by Post et al. [11]
is based on an 61 us MD simulation by Ernst et al. [19] capturing six closing and
six re-opening processes. Here, a combination of contact distances and side-chain
dihedral angles was chosen as input features. Applying the community detection
technique called Leiden algorithm provided 85 internal coordinates (82 contact
distances and 3 dihedral angles) associated with the open-close transition of T4
lysozyme [48]. To further reduce the number of variables, Post et al. focused on
hydrogen bonds and salt bridges, which change during the open-close mechan-
ism. In the end, six coordinates (5 contact distances and 1 dihedral angle) were
obtained. The most important coordinates were found to be the distance da 145
(salt bridge between residue 22 and residue 145), describing the mouth opening
width 2 and the locking coordinate p = dy g0 (salt bridge between residue 4 and
residue 60). The latter describes if residue 4 in the hinge region is in its locked
or free state, which is of interest because this residue seems to leave the binding
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pocket always alongside the closing of the mouth. With RDC, five metastable
states were identified by employing the six coordinates: 1g, 1g, 2, 4z and 4g
with populations of 33.5%,35.5%,1.3%,14.5%,15.1%. These can further be
separated into two main states, 1 (open) and 4 (closed), and one transition state
2. In the substates, the index R accounts for the fully relaxed equilibrium state
and FE (for excited) represents the starting position of the open-close transition.

Figure 3.2: Structure of T4 lysozyme from [11], indicating the opening coordinate
of the mouth region and the locking coordinate p that describes the motion of the key
residue 4 (red) in the hinge region.
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SIX-STATE TOoy MODEL

4.1 Workflow

The six-state toy model is a simple system of six microstates constructed by
Huang et al. [14]. It is built in the way that the microstate transitions are
Markovian, so the time step is At = 1frame. Therefore, a single transition
count matrix is sufficient to calculate the time-dependent micro- and macrostate
TPMs. The idea is to lump the six microstates together into three macrostates
and to study the macrostate dynamics of the resulting MSM and qMSM.

The workflow illustrated in the following scheme makes use of equations intro-
duced and explained in chapter 2, providing a step-by-step guide of how to build
an MSM and a qMSM for the toy model. It can also be applied to more complex
systems when adjusting some steps, e.g. considering non-Markovian microstate
dynamics or applying other projection methods.

29
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‘ MD simulation ’

row-normalize C (equation (2.4))

|

L microstate TPM }

Thicro(At) with At = 1 frame

Tmicm(nAt) - Tgicro(At)

|

propagated microstate TPMs
Tmicro<At)> 00o0g Tmicro(tend)

assuming local equilibrium (eqution (2.10))

|

propagated macrostate TPMs
Tmacro(At>7 ey Tmacro (tend>

equation (2.7) equation (2.34)
relaxation times memory kernel
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4.2 From Microstates to Macrostates

For the six-state toy model, the transition count matrix is given by [14] as

30000 100
100 10000 3
C_ 3 3000 10
10 1000 1 ’
1 300 3
3 100

which satisfies detailed balance. The matrix represents a process in which the
system is most likely found in the first or second state, since they are quite stable
(high self transitions counts Cjy, Cy2) and the transitions between them are the
most probable interstate transitions. In contrast, state 5 and 6 are the least
populated states. The count matrix also reveals that only transitions between
‘neighbour’ states take place, resulting in a block-diagonal kind of shape.

The corresponding microstate TPM can be calculated from C via equation (2.4).
Since the macrostate dynamics are Markovian for At = 1frame by construc-
tion, the TPM can be directly propagated for multiple steps n of At with
Tmicro(nAt) = T&icro(At)‘

To show the importance of good lumping, the projection from micro- to mac-
rostates will be performed with two different aggregation matrices Agpod, Abad
which are M x m matrices with M = 3 and m = 6. An entry A; = 1 in-
dicates if microstate i € [1,2,3,4,5,6] is assigned to macrostate J € [1,2,3].
For good lumping, a grouping by the strongest transition probabilities is chosen
(considering the block-like structure of C). For bad lumping, the grouping is
done randomly [14]:

110000 100001
Agoda= |0 01 1 0 0, Apaa=({0 1 1 0 0 O
000O0T11 00011P0

For the projection, local equilibrium is assumed (equation (2.10)). The equilib-
rium populations of the six microstates are given by [14] as

Mo = (0.674,0.226,0.0675,0.0227, 0.00681, 0.00226)” (4.1)

and the macrostate equilibrium populations are calculated as the sum over the
corresponding microstate populations
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T4 = (0.9,0.0902,0.00907)7,

macro

M —(0.67626,0.2935,0.02951)" .

macro

(4.2)

The macrostate TPM Tyaco(nAt) can now be calculated for each time step
nell,. .. tea/At. 557 = 4000 frames and t*24 = 8000 frames are taken as the
respective end times, determining the length of the models below. These TPMs
are the basis for the models which are going to be built and also work as the

reference when validating these models.

4.3 Building the Models
qMSM

With equation (2.34) the memory kernel can be determined for n > 1 with a
fixed time step of At = 1frames. In case of good lumping, the memory kernel
elements for transitions to state 1 and 2 decay very quickly, while the lifetimes
of K31, K3 and K33 are significantly longer (figure 4.1a, b). This indicates a less
well-defined timescale separation between the intra- and the interstate processes
associated with state 3. The kernel elements resulting from bad lumping decay
in general more slowly than the ones from good lumping, also indicating that
here the transitions within the states happen on a similar timescale as the trans-
itions between them. Again, processes associated with state 3 have the most
long living, and highest, memory elements. This is reasonable since with bad
lumping this state ends up being composed of the most and the least populated
microstates. So the timescale separation is the worst for state 3.

The diagonal kernel elements, i.e., the ones corresponding to the self-transitions,
always start positive while off-diagonal elements can also be negative. Positive
values for self-transitions are due to decreasing transition probabilities, which
lead to negative values in the TPMs’ derivatives T(nAt) (equation (2.35)),
and therefore in particular to T(nAt) — T(0)T(nAt) > 0, which is the first
term in the memory kernel equation (2.34). In contrast, the interstate trans-
itions increase with time, so that T(nAt) > 0. Still, not all off-diagonal kernel
elements are negative at the start. To understand why, one can have a look
again at the reshaping of the first term of the memory kernel equation (2.36).
Tij((n + 1)At) < [T(At) T(nAt)];; results in a negative memory kernel element
and for Tj;((n + 1)At) > [T(At) T(nAt)],; the kernel element is found posit-
ive. In other words, when assuming Markovian dynamics would overestimate
the resulting transition probabilities, the negative kernel causes a reduction of
the value, and the other way around.
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Figure 4.1: Time-dependent memory kernel determined for the toy model. The kernel
elements for (a) good and (b) bad lumping. K;;(0) cannot be calculated with equation
(2.31). The kernel lifetimes are found as 75 °d — 200steps and rRad = 1000 steps
because that is where all elements are decayed. Mean integral of the memory kernel

for (¢) good and (d) bad lumping. The chosen kernel lifetimes are shown as a red line.

The point where all kernel elements are decayed defines the memory kernel life-

time 7. By looking at figure 4.1a, 78°° = 200 steps is found for good lumping
and 7024 = 1000steps for bad lumping. To verify the kernel lifetime 7, on

which the qMSM will be built, the mean integral of the determined memory
kernel (MIK) is calculated with equation (2.37) where for this toy model N = 3.
The kernel lifetime 7, is the minimum time when the MIK converges to a
stable value. As it is seen in figure 4.1b the earlier determined kernel lifetimes
7809 — 200 steps and 7824 = 1000 steps lay respectively slightly before and after

the point, where the plateaus start. Still, they appear to be reasonable values.

The finite lifetime of the memory kernel allows rewriting the generalized master
equation (2.27) such that the upper limit of the convolution integral is set as
min[7g, t|, yielding equation (2.33) from which the derivatives of the qMSM
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TPMs can be calculated for t = nAt withn € [1, ..., tena/At]. For the toy model,
it is again sufficient to write the convolution integral as a sum over discrete values.
Starting with Toumsm(Af) = Taco(At) and Tmacm(O), the iterative integration
of Tymsm(t) provides Tyusm(t) for every time t = nAt (At = 1 frame).

MSM

For the MSM the lag time is chosen to equal the kernel lifetime, so 75°°¢ = 7804 —

200 frames for good lumping and 792 = 7£2d = 1000 frames for bad lumping. The
lag time and the memory kernel lifetime are directly linked to the length of MD
simulation needed to build the models, respectively. In this way, one can directly
compare, if qMSM provides better results for the same conditions. The lag
time defines the temporal resolution of the MSM (At = 7;) and the Chapman-
Kolmogorov equation (2.6) is used to obtain the MSM dynamics starting with

Tmacro (TL) .

4.4 Validating the Models

Implied Timescales

The quality of the state lumping and more in general of the models can be
judged by looking at the implied timescales (equation (4.2)), since the I'TS curves
should ideally converge to the values of the microstate timescales. For a perfect
agreement of microstate and macrostate timescales, the relaxation time does not
change through the state reduction, indicating a good timescale separation of
intra- and interstate dynamics for the macrostates. For the microstate times-
cales, the eigenvalues of the microstate TPMs are calculated, sorted from slow-
est to fastest process, and the ITS are again determined with equation (2.7).
This six-state model is constructed in the way that the microstate processes are
Markovian and therefore have constant implied timescales, which is not the gen-
eral case for real biological systems.

The fact that the I'TS curves for the bad lumping differ a lot from the microstate
timescales indicates emerged kinetic barriers within states due to this kind of
lumping. For good lumping, the slow macrostate processes almost perfectly
reproduce the microstate timescales and at 78°°! = 200 frames the relaxation
time is already converged, seen in figure 4.2a. In addition, the I'TS-plot (figure
1.2b) shows that for bad lumping the timescales of the two slowest processes
do not converge within the plotting range. Hence, for 7024 = 1000steps the
relaxation time is still dependent on the lag time. So the MSM does not correctly

reproduce these processes.
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Figure 4.2: Validation of MSM and ¢gMSM built for the toy model. Implied timescales
of the two slowest processes for (a) good lumping and (b) bad lumping. The microstate
timescales are constant because the microstate processes are perfectly Markovian. The
chosen lag time T%OOd = 200 frames lays already in a constant region of the macrostate
relaxation time, while for TEad = 1000 frames the relaxation time is still dependent on
the lag time. Chapman-Kolmogorov test for (¢) good lumping and (d) bad lumping.

Only the MSM deviates, when using bad lumping, for transitions out of state 3.

Chapman-Kolmogorov Test

For the Chapman-Kolmogorov test, the transition probabilities of the MSM and
the qMSM are plotted together with the ones directly obtained from the refer-
ence dynamics. Usually one would only look at the diagonal elements because of
statistic reasons (more self-transitions than interstate transitions), but here also
the off-diagonal elements are presented and show good agreement.

In case of good lumping, the test reveals a perfect match of both the MSM and
the qMSM with the reference, seen in figure 4.2c. The well-defined timescale
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separation of the microstate dynamics is maintained after lumping, therefore
with 7, = 200steps the system’s dynamics can be reproduced with the MSM.
For bad lumping, the qMSM still fits the reference quite perfectly, while the MSM
deviates at certain points (figure 4.2d). This is due to poorly separated timescales
resulting from random lumping, which appears to mostly affect transitions out
of state 3. Also, the increased lag time leads to a worse temporal resolution of
the MSM dynamics. The lag time was chosen to equal the kernel lifetime for
both kinds of lumping, so one can directly compare the results of MSM and
gMSM as these parameters are linked to the length of MD simulation needed to
construct the respective models. The fact that qMSM still performs perfectly
for the bad lumping indicates that it can be applied for cases where an MSM is
not descriptive.

Population Probabilities

For a better insight into the actual dynamics of the toy model system, the prob-
ability to find the system in a certain state depending on time and on the initial
condition can be calculated with equation (2.28). The resulting ’kinetic plots’
give an insight on how the system evolves when starting in a certain state, i.e.,
they provide an outlook on the paths the system takes from one state to another.
The state population probabilities are therefore determined with the reference
TPMs T aco(nAt), as well as with the MSM TPMs and the qMSM TPMs.

The plots in figure 4.3 reveal that for good lumping, when starting in state 1
the system most likely stays in there. If the initial state is state 2, it probably
changes into state 1 after 500 to 1500 time frames and state 3 is most likely not
visited. Because state 3 is the least populated one, the system changes quite
quickly into the neighbouring state 2 and finally back to 1. For bad lumping,
the equilibrium populations are reached much faster, although showing similar
evolutions (figure 4.4).

As the kinetic plots are directly linked to the Chapman-Kolmogorov test, they
highlight the same issues when comparing MSM and qMSM to the reference. For
good lumping, the MSM reproduces well this population evolution, but for bad
lumping it shows deviations from the reference, which are mainly found in the
’kinetic plot’ starting in state 3, i.e., the last one reaching equilibrium. Here, the
time restriction of 7, leads to shifts in the population probabilities around a time
of 1000 frames to 2000 frames. In contrast, the gqMSM reproduces the reference
data perfectly.
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Figure 4.3: Population probabilities when using good lumping. Evolution of the
states population probabilities determined with (a) the reference macrostate TPMs,
(b) the MSM dynamics and (c) the gMSM TPMs. The following colour code is used:
state 1 (blue), 2 (orange), 3 (green).
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Figure 4.4: Population probabilities when using bad lumping. Evolution of the states
population probabilities determined with (a) the reference macrostate TPMs, (b) the
MSM dynamics and (c¢) the gMSM TPMs. The following colour code is used: state 1
(blue), 2 (orange), 3 (green).



CHAPTER 5

THE FOLDING PROCESS OorF HP35

5.1 Workflow

For HP35, the qMSM is built on the macrostates trajectory by Nagel et al. [17].
After performing PCA on the input features (minimal contact distances), the
trajectory was clustered into a few hundreds of microstates with RDC. The mi-
crostates were subsequently lumped into 12 macrostates with dynamical cluster-
ing. Nagel et al. built an MSM on HP35 that well describes the dynamics of the
system, and makes it a good benchmark to test the qMSM as a new approach.
The corresponding kinetic network of the MSM is shown in figure 5.1, including
a native basin (state 1-5), an unfolded basin (state 9-12) and a few intermediate
states.

As a first step, the macrostate TPMs are built from the state trajectory for
lag times 7 € [1, ..., N| frames, using the python package msmhelper [50]. Here
1 frames = 0.2ns and N is the maximal considered lag time, in units of frames.
Choosing N = 3500, tenq = 0.7 us is the end time used to build the models.

With the resulting TPMs, the qMSM approach can be applied to HP35 by cal-
culating the time-dependent memory kernel with equation (2.34). The MIK
is then calculated (equation (2.37)) to obtain the kernel lifetime. Feeding the
first TPM and the kernel lifetime back into the GME (2.33) finally provides
the qMSM. By calculating the ITS of the qMSM dynamics and performing
the Chapman-Kolmogorov test, MSMs calculated for different lag times 7, €
[10ns, 20 ns, 30 ns, 50 ns, 100 ns] and the gMSM are compared to the transition
probabilities directly obtained from the MD data.
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Figure 5.1: Kinetic network of the MSM from [17]. The colour code reflects the
fraction of native contacts of the state, and the edges represent the flux between
different states.

5.2 Comparing MSM and qMSM

To build the qMSM, the time-dependent memory kernel is determined as a first
step with equation (2.34). Plotting the evolution of all elements, seen in figure
8.1 in the appendix, reveals a block-like pattern: dynamically close states (seen in
the kinetic network 5.1) show more often memory, which does not decay instant-
aneously because transition within a basin are usually faster than inter-basin
transitions and therefore are less well-separated from the intrastate timescales.
The kernel elements show more fluctuation for less populated states, indicating
that with lower sampling, the memory kernel values are influenced by statistical
noise resulting from numerical fluctuations in the simulation data. In figure 5.2a,
only the diagonal elements of the memory kernel are shown.

In comparison to the toy model, the kernel lifetime is much harder to determine
directly by looking at the kernel elements, because they show no smooth curve.
The kernel lifetime is therefore chosen by calculating the MIK, shown in figure
5.2b. At 7 = 60ns the MIK reaches a constant value, so this time is chosen as
the kernel lifetime to build the qMSM. Here, it should be noted that for HP35
the input data still allows for a clearly defined MIK-plateau, which is not the
case for every system [16]. If one finds is more fluctuation in the memory kernel
for slow timescales, it might be reasonable to test different kernel lifetimes to
obtain an accurate qMSM.

The qMSM and the MSMs are now validated and compared by looking at the
ITS and the Chapman-Kolmogorov test. The ITS-plot in figure 5.3a shows quite
slowly converging timescales for the three slowest processes. Nevertheless, the
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Figure 5.2: (a) Only diagonal elements of the time-dependent memory kernel for
HP35 (K; = K;; for i € [1,...,12]). K;;(0) cannot be calculated with equation (2.34).
(b) Mean integral of the memory kernel. The memory kernel decays at 7 = 60ns
(vertical red line).

relaxation time becomes constant around 60 ns. Therefore, only the slowest lag
time 7, = 100 ns provides good results for the MSM.

As the last step, the Chapman-Kolmogorov test reveals if the gqMSM reproduces
the states’ dynamics, seen in figure 5.3b. Expectedly, for both models, state 11
is represented the worst because it is a very low populated (0.9%) state [17]. For
the MSM, the self-transition probabilities decay significantly faster than for the
MD reference, especially for the unfolded states 11 and 12. This improves for
high lag times, as for most of the states the MSM with a lag time of 7, = 100 ns
fits the MD values quite well, promising a better fit for even higher lag times.
Since in the molecular dynamics under study there are relevant processes faster
than this, taking such a slow lag time is not desirable. In contrast, the qMSM
build for a kernel lifetime of 7 = 60 ns already matches the MD data well for
every state and shows only minor deviations for states 11 and 12 starting around
100 ns.

In the work of Nagel et al. the most probable paths from the complete unfolded
state 12 to the native state 1 were found to pass first state 10 and then state 5 or
9 before transitioning into state 1, or to go directly from state 12 to 5 or 9 into
state 1. Nagel et al. also determined the folding time, i.e., the time it takes from
state 12 to reach state 1, from the MSM as tgq = 1.7 s [17]. Since the models
here are built for an end time of to,q = 0.7 us, the ’kinetic plots’, shown in fig-
ures 8.3 and 8.2 in the appendix, do not provide a complete outlook, on whether
the qMSM predicts the same paths because within this time, equilibrium is not
reached yet. Still, at least for this short-time range, the qMSM’s reproduction
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Figure 5.3: Validation of MSM and qMSM build for HP35. (a) Implied timescales of
the three slowest processes. Except for 7 = 100 ns, all chosen lag times lay in a region
where the macrostate relaxation time is not constant yet. (b) Chapman-Kolmogorov
test (1; = Ty for ¢ € [1,...,12]). For states 11 and 12 both models show the worst
agreement. Still, the gMSM matches the MD reference better than the MSMs.

of the reference kinetic evolution is significantly better than the one calculated
from the MSM (with 7, = 100 ns).

Since the lag time and the kernel decay time are directly linked to the length of
MD simulation needed to build the respective model which includes all relevant
processes, the test indicates, that for qMSM a smaller amount of data could be
sufficient. To prove this, the length of the used trajectory is reduced first by
33 % and then by 50 % of its frames.

5.3 Shortened State Trajectory

Using shorter state trajectories (66 % and 50 % of the data), calculations and
plots are performed the same way as with the full trajectory for both MSM and
gMSM. The ITS- and the MIK-curves, seen in figures 5.4a, 5.4b and 8.4 in the
appendix, do not show a significant deviation from the ones obtained with the
full trajectory. Only the MIK-curves are a bit less smooth and also show slightly
higher plateaus (=~ 8 x 10~*ns™! instead of &~ 6 x 10~*ns™! for the full trajectory)
because of increased numerical fluctuation coming from sparser sampling.

The Chapman-Kolmogorov tests (figures 5.4c, d) reveal again good agreement
for the qMSM. Only the self-transition probabilities of the low populated state
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11 and the completely unfolded state 12, which already did not show a perfect
fit for the full trajectory, decay slightly too fast. With a shorter trajectory, also
the MSMs’ dynamics deteriorate, but not significantly more than the qMSM’s.
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CHAPTER 6

ALLOSTERIC COMMUNICATION IN
T4 LYSOZYME

6.1 Workflow

The macrostate trajectory used to build a qMSM for T4 lysozyme was obtained
in a study of Post et al. [11]. They chose a combination of contact distances
and dihedral angles as input features with the Leiden algorithm [48] and RDC
provided five metastable states: namely 1z, 1g, 2, 4z and 4g, where state 1 is
the open conformation, state 4 the closed one and state 2 the transition state.
By building an MSM with 7, = 0.7 ns, Post et al. found that the main path from
the open to the close conformation was 1p — 1 — 2 — 4 — 4z. The MSM
is visualized in the kinetic network, shown in figure 6.1. However, the problem
with applying MSM to the open-close transition of T4 lysozyme is that it is
a cooperative process, where the various motions occur almost simultaneously,
which is in contrast to the timescale separation assumed for an MSM [11]. As
one consequence, the transition times calculated with MSM by Post et al. ex-
ceed the ones directly obtained with MD simulation data by a factor of 2. T4
lysozyme can therefore be used here as an example system on which MSMs show
their limits, and it is of interest to investigate how a qMSM instead performs for
such a system.

As for HP35, the python package msmhelper [50] is used to obtain the macro-
state TPMs for lag times 7 € [1,..., N] frames, where 1frame = 10ps and N
is chosen as 100000, i.e., tenqg = 1 us. To obtain a qMSM for T4 lysozyme, the
same steps are applied as for HP35. In the Chapman-Kolmogorov test, the result-
ing model is then compared to the MSM built for the lag times 7, € [0.7 ns, 2 ns].

45



46 CHAPTER 6. ALLOSTERIC COMMUNICATION IN T4 LYSOZYME

The state numbering (1 — 5) is connected to the five states presented above
according to the following:

1—1g

2—2
33— 4g
4 — 1p
5 — 4p

Figure 6.1: Kinetic network of the resulting Markov state model of T4 lysozyme,
indicating the main transition times (in units of ns) taken from [11].

6.2 Comparing MSM and qMSM

In the first step, the memory kernel is calculated with equation (2.34). Like
for HP35, the kernel lifetime is hard to determine just by looking at the time
evolution of the kernel elements, (figure 8.8 in the appendix), as they seem to
decay very fast and are quite noisy. Nevertheless, one can see that the memory
kernel decays infinitely fast for transitions between the open states 1z, 1g and the
closed states 4g, 4, indicating well-separated timescales for these main states.
The kernel elements for the interstate transitions 1z <+ 1p and 4 <> 45 seem
to decay slower. Since these substates are dynamically very close states, it is not
surprising that they show more memory, because for these states the timescales
of the interstate transitions are less well-separated from the intrastate transition
timescales. Finally, the transitions assigned to the low populated state 2 show
the most fluctuations in the memory kernel due to statistical noise coming with
poor sampling. In figure 6.2a, only the diagonal elements of the memory kernel
are shown.
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Figure 6.2: (a) Only diagonal elements of the time-dependent memory kernel for
T4 lysozyme (K; = K;; for i € [1,...,5]). K;;(0) cannot be calculated with equation
(2.34). (b) Mean integral of the memory kernel used to determine the kernel lifetime
Tk = 2ns (vertical red line).

The MIK, seen in figure 6.2b, confirms the short lifetime of the memory kernel:
for 7% = 2ns the MIK-curve is clearly converged. This kernel lifetime is now
used to determine the qMSM TPMs by iteratively integrating the GME (2.33).

For the validation of the MSM, the ITS are calculated. The relaxation time does
not converge within the plotting range of 7 = 40ns, seen in figure 6.3a. There-
fore, for both chosen values of 77, the relaxation time is still dependent on the lag
time, i.e., the MSMs is not accurately describing the dynamics of the process.
The Chapman-Kolmogorov test in figure 6.3b shows that the evolution of the
most populated states 1z and 1g can be well described by the MSMs and the
qMSM, as the self-transition probabilities of the MSMs decay just slightly faster
than the ones of the MD reference, while the ones of the qMSM show just minor
deviations. For the other states the dynamics of both models decay too fast,
but the qMSM is significantly closer to the MD reference values than the MSMs.
Different kernel lifetimes could be tested here to check if they improve the qMSM.

It is not clear why the qMSM self-transition probabilities seem to flatten for
all states starting around 100 ps. Especially because it looks like they have not
reached equilibrium yet within the chosen end time of t.,q = 1 us, it would be
interesting to see how the qMSM dynamics evolve for timescales beyond this
point. Nevertheless, one can say, that the gMSM already shows an improvement
compared to the MSMs, at least for short-time predictions.

For cooperative processes like the open-close transition of T4 lysozyme, the popu-
lation probabilities do not provide an insight into the transition pathways because
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Figure 6.3: Validation of MSM and qMSM for T4 lysozyme. (a) Implied timescales of
the three slowest processes. The chosen lag times lay in a region where the macrostate
relaxation time is not constant yet. (b) Chapman-Kolmogorov test (K; = Kj; for
i € [1,...,5]). Both models fail the test, but qMSM agrees to the MD reference
better, especially for the open states 1z and 1g.

they just show the statistical evolution of the populations and can not capture
rare events of transitioning in and out of a low populated state. Here, the ’kin-
etic plots’ seen in figure 8.9 in the appendix just reflect that the relaxed and
the excited conformations are dynamically close, as they most likely first trans-
ition into the respective 'partner’ state. In addition, the population probabilities
confirm that the qMSM reproduces better the reference dynamics.
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CONCLUSIONS

7.1 Summary

Markov state models are widely used to describe biological processes but they
involve some limitations. The main challenge is to find a workflow such as
dimensionality reduction and clustering in order to obtain a sufficient times-
cale separation between intra- and interstate dynamics in the resulting MSM. In
many cases, the dynamics turn out non-Markovian when a short enough lag time
(i.e., which is not longer than any relevant processes) is chosen. The aim of this
study was to consider the work of Huang at al. who proposed a new method, the
quasi Markov state model (qMSM), which deals with non-Markovian dynamics
by considering the non-instantaneous response of the system [14], and applying
it to different systems. For that model a memory kernel is determined by invert-
ing the underlaying equation of motion, the generalized master equation (GME)

(2.27).

As a demonstration of how to apply a qMSM, the six-state toy model of Huang
et al. was considered. For this toy model, the impact of good lumping compared
with a bad lumping was then analysed. When using a grouping of the mi-
crostates into three macrostates based on the strongest transition probabilities
(good lumping), the intra- and interstate timescales were well-separated. The
implied timescales showed an almost perfect match of the slowest micro- and
macrostate processes. Thus, for a lag time of 7, = 200 frames the MSM already
provided a perfect description of the toy model’s dynamics. For the obtained
gMSM dynamics, the Chapman-Kolmogorov test showed a perfect agreement as
well.
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On the other hand, a bad lumping of the six states resulted in a breakdown
of the timescale separation. For the chosen lag time 7, = 1000 frames, the im-
plied timescales were still dependent on the lag time, which indicated, that MSM
did not reproduce the process perfectly. This was confirmed by the Chapman-
Kolmogorov test, which showed deviations from the MD reference. The less
well-defined timescale separation due to bad lumping was also expressed in the
memory kernel. Here, all elements decayed significantly slower than the ones
obtained from good lumping. Still, gMSM provided consistent results, as the
Chapman-Kolmogorov test showed again good agreement, suggesting that the
qMSM was less affected by bad lumping. By considering the memory kernel, the
transition probabilities were adjusted depending on an over- or underestimation
of the dynamics when using a Markovian description. Since the toy model is an
extremely simplified system, the perfect results are not surprising, and it rather
serves here as a step-by-step guide on how to perform a qMSM.

To test the advantages of qMSM for a real system, the method was applied on
the well-studied folding trajectory of HP35 by Piana et al. [18]. Analysing a state
trajectory obtained by using contact distances as input features, PCA as the di-
mensionality reduction method and RDC and MPP for clustering, an MSM was
already obtained by Nagel et al. [17]. When applying qMSM to that trajectory,
the memory kernel lifetime was found as 75 = 60ns. With the resulting qMSM
dynamics, the Chapman-Kolmogorov test showed a perfect agreement for most
states. Even the dynamics of the states, for which the MSM clearly failed the
test, were well-reproduced by the qMSM. The self-transition probabilities here
only decayed slightly faster than the MD reference. The MSM showed better
results with increasing lag times, but an even longer lag time would have been
needed, to match the MD reference as well as the qMSM did. Since the lag time
and the kernel lifetime are directly linked to the length of MD simulation needed
to capture the relevant processes for building the respective model, the results
indicated that qMSM may still provide a good description with less available
data. To validate that, the macrostate trajectory was reduced by 33 % and 50 %
of its frames. For most of the states, the model again agreed well with the MD
reference. Only for the states that did not show perfect agreement before, the
gMSM deteriorated slightly. In summary, applying qMSM to HP35 provided a
good description of the dynamics of its folding process for all states and also for
a shortened trajectory, while MSM failed for some states both with a shortened
and the full trajectory.

Overall, gMSM seemed to provide good results for an already quite optimized
analysis of the underlaying simulation data. It was left to check how it performs
for a less well-understood process. Therefore, the dynamical evolution of allos-
teric transitions, as studied in the protein T4 lysozyme, was investigated. The
global open-closed motion of the two domains of T4 lysozyme was studied by
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Post et al. [11], who obtained a state trajectory based on an 61 us MD simula-
tion of Ernst et al. [11]. They defined a combination of contact distances and
dihedral angles as input features using the community detection technique called
Leiden algorithm and applied RDC. The resulting macrostate trajectory of five
configurational states was here used to build a qMSM. It appeared, that the
memory kernel decayed quite fast for all states, with a lifetime of 75 = 2ns. The
Chapman-Kolmogorov test showed that the qMSM provided significantly better
results than the MSM. For the high populated open states both models were
quite close to the real dynamics, due to good sampling. For the less populated
closed states, they could less well reproduce the MD reference, but the better
performance of qMSM compared to MSM was even more evident. This again
indicates, that qMSM is less sensitive to low sampling, which allows using less
MD simulation data.

In summary, qMSM describes biomolecular dynamics very well for well-known
processes like the folding process of HP35, and even in cases where the MD simu-
lation analysis still can be improved, it provides significantly better results than
the more commonly used MSM, at least for short-time predictions.

7.2 Outlook

Even though qMSMs seems to perform well for the considered systems, it is still
in its development stages. One thing that was not addressed in this study but
can be an issue for other systems, is that the memory kernel can become very
noisy because it is strongly affected by the numerical fluctuations of the MD
simulation data [16]. In that case, the kernel lifetime may be hard to determine
by looking at the mean integral of the memory kernel, since there will be no clear
plateau. Still, a qMSM can be built by testing different kernel lifetimes. But the
resulting dynamics can be numerical instable, which clearly limits the applicabil-
ity of gMSM. In the meantime, there are some new model approaches which deal
with this issue, e.g. the integrative generalized master equation (IGME) [51]. It
uses the time integrations of the memory kernel, that are calculated implicitly
instead of explicitly by writing the convolution integral of the GME as a Taylor
expansion. Neglecting higher order terms promises better numerical stability in
the resulting dynamics. So it would be of interest to study more systems using a
gMSM to find out its limitations and to compare it with other model approaches
considering memory.

With MSMs, one can obtain even more information about the process under
study than discussed here. One mayor application of MSMs is using the trans-
ition probability matrix T(7) for running Markov Chain Monte Carlo (MCMC)
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simulation [52]. With MCMC, information like most important pathways and
waiting times can be extracted out of this single matrix. Knowing the most
frequent pathways between, e.g., a folded and an unfolded state or an open and
a closed state, is the first step to find out, how to force or inhibit these processes
(e.g. for medical purposes). Furthermore, it is useful to know the time it takes
from entering the starting state to reach the ending state, also known as the
waiting time. In addition, most important pathways and waiting times are good
quantities to validate a state model, as they also can be obtained directly from
MD data. Thus, it would be of great interest to see how qMSM performs for
these quantities. The challenge here is that qMSM does not provide a single
transition matrix but a time dependent set of matrices and it is not yet clear
how to run an MCMC-type propagation in this case.

In summary, qMSM opens the door for the study of non-Markovian dynamics,
where it is challenging to construct a valid MSM with just a few states. So far,
it has been shown that the qMSM successfully describes the dynamics of simple
systems, but it is still not known, how to use it for pathway predictions.
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Figure 8.1: Time-dependent memory kernel elements for HP35. It can be seen, that

the elements for transitions in particular between dynamical close states do not decay
instantaneously.
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Population probabilities
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Figure 8.2: Population probabilities for HP35. (a) Using the MSM TPMs with
7, = 100ns and (b) the qMSM TPMs. Each plot shows the population probability
evolution for a different starting state. P(0) is the initial condition and P;(0) = 1
indicates that the starting state is state ¢. The following colour code is used: state 1
(dark blue), 2 (orange), 3 (green), 4 (red), 5 (purple), 6 (brown), 7 (pink), 8 (gray), 9
(light green), 10 (light blue), 11 (blue), 12 (light orange).
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Figure 8.3: Population probabilities for HP35 when using the macrostate TPMs ob-
tained directly from MD simulation data. Each plot shows the population probability
evolution for a different starting state. P(0) is the initial condition and P;(0) = 1
indicates that the starting state is state ¢. The following colour code is used: state 1
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Figure 8.4: Mean integral of the memory kernel when using a reduced trajectory for
HP35. 7 = 60ns (red line) is the chosen kernel lifetime.
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Results when using Hummer-Szabo Projection

Both models (MSM and qMSM) show slightly better results when using the
Hummer-Szabo projection (equation (2.13)) to get macrostate TPMs. In the
main analysis, these results are not shown to be consistent with the type of
projection for all investigated systems.
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Figure 8.5: Time-dependent memory kernel elements for HP35 when using Hummer-
Szabo projection. The elements for transitions between dynamical close states do not
decay instantaneously.
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tion. 7 = 60ns (red line) is the chosen kernel lifetime.
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Figure 8.7: Validation of the MSMs and the qMSM when using Hummer-Szabo

projection for HP35.

(a) Implied timescales of the three slowest processes. They

converge faster than the ones calculated when assuming local equilibrium (5.3a). For
7, = 50ns, 7, = 100 ns the relaxation times are converged. (b) Chapman-Kolmogorov
test. The qMSM shows good agreement for all states, while the MSM is less accurate,

especially for state 11.
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T4 Lysozyme

Memory kernel elements

3'L Ki1 1 Kiz 1 Kiz Kiz Kis

Lnl
|2 3] i i _( i
r‘[‘ 3: Kz K: ] 523 B Koz K3s
O 3 Ks1 1 Ksz 7 | Ks3 7 Ksz 7 Kss
c 91 | . ‘
g4 4 4 4
- 31 Ks1 7 Kaz 7 Kaz 7 k Kaz 7 Kas
- 0 - >
A s
E 3' Ksi 7 Ks2 7 B Kss 7 Ksa 'L Kss
4; | - -
B S A —
0 2 0 2 0 2 0 2 0 2
time [ns]

Figure 8.8: Time-dependent memory kernel elements for T4 lysozyme. K;;(0) cannot
be calculated with equation (2.34). It can be seen, that the elements for transitions in
particular between dynamically close states and all transitions assigned to state 2 do
not decay instantaneously.
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Population probabilities
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Figure 8.9: Population probabilities for T4 lysozyme. (a) Using the macrostate
TPMs obtained directly from MD simulation data, (b) using the MSM TPMs and (c)
the qMSM TPMs. Each plot shows the population probability evolution for a different
starting state. P(0) is the initial condition and P;(0) = 1 indicates, that the starting
state is state i. The following colour code is used: state 1 (dark blue), 2 (orange), 3
(green), 4 (red), 5 (purple).
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