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Abstract

Extracting meaningful insights from molecular dynamics simulations is
challenging and typically involves employing dimensionality reduction
techniques. In this thesis, we present novel theoretical and computa-
tional approaches that address two main pillars of dimensionality reduc-
tion, namely feature selection and feature extraction.

In the context of molecular dynamics, feature selection describes the
identification of a small subset of coordinates that are most functionally
relevant for the characterization of a specific process of interest. We
introduce MoSAIC, a method that explores the correlation structure of
the input data to distinguish functional dynamics from coordinates that
reflect thermal noise. To address the limitations of the linear Pearson
correlation coefficient, especially in the case of multidimensional data,
we introduce a nonparametric mutual information estimator that cap-
tures all dependencies—no matter whether linear or nonlinear. A joint
analysis employing both MoSAIC and the normalized mutual informa-
tion estimator on T4 lysozyme reveals both the mechanistic network of
highly correlated coordinates driving the allosteric transition and result-
ing global conformational changes.

Feature extraction, on the other hand, consists of projecting the original
data into a lower-dimensional representation while preserving the essen-
tial topological structure of the data. To this end, we present two meth-
ods that combine the expressive power of neural networks with physical
constraints, yielding interpretable and physically meaningful latent rep-
resentations of protein dynamics that offer greater insights compared to
conventional feature extraction methods.
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Decoding the Building Blocks
of Life 1

O caos é uma ordem por decifrar.
– José Saramago (O Homem Duplicado)

Imagine a tiny molecular machine designed to autonomously perform
specific chemical or physical tasks over and over again. To achieve this,
it must gather energy and raw materials from its environment and con-
vert them into desired products. To do so, the machine needs mobility
and navigation, and after production, it must transport the product and
dispose of any remaining waste. All of these different functions are com-
plex and rely on the coordinated interaction of numerous components,
which might fail over time. To guarantee long-term operation, it must
detect and repair damaged parts, or perhaps even replicate itself, requir-
ing memory, instructions, and the means to act upon them.13 In nature,
such machines exist as biological cells, and at their core lies an army of
nanoscale engineers faithfully carrying out the above-mentioned tasks:
proteins.14,15

The name ”protein” can be derived from the Greek word ”πρωτεῖος”,
translating as ”fundamental” or ”in the lead”. Proteins are the quintessen-
tial building blocks of life, living up to their etymology by orchestrating
almost every biological process in living organisms. Given that their
architecture and function have been perfected through roughly four bil-
lion years of evolutionary pressure,14 it might not come as a surprise
that proteins are nature’s most structurally complex and functionally so-
phisticated molecules. They perform a myriad of functions that sustain
and regulate life, ranging from cellular functions such as transcription or
metabolism to intercellular communication, including ion channel regu-
lation and immune response. This functional diversity is reflected by the
fact that proteins account for over 50% of the dry weight of cells.

Fulfilling such diverse functions is only made possible by the flexibility
of proteins to adapt their structure depending on the task at hand: like
a string of pearls, proteins are made up of different amino acids linked
together by peptide bonds.16 Each amino acid has a unique side chain
with distinct physicochemical properties, and the potential interactions
among all side chains result in an immense combinatorial space of possi-
ble three-dimensional conformations. However, only a small ensemble
of energetically favorable conformations is realized in nature through the
proteins’ folding process. Yet, this folding process is highly complex and
inherently error-prone. Interactions with other biomolecules can induce
protein misfolding, culminating in the worst case in maladies ranging
from cystic fibrosis to devastating neurodegenerative diseases—such as
Alzheimer’s, Parkinson’s, or Huntington’s.17–20 A distinct class of disor-
ders arises from prionsi

i The exact disease mechanism is still
not fully understood, but it is assumed
that the prion nucleates the misfolding
of the host’s protein into stable large-
scale 𝛽−amyloids, which are toxic to the
host.13

(proteinaceous infectious particles), where an
infectious protein induces the host’s protein to misfold as well, leading
to diseases such as Creutzfeldt-Jakob or Mad Cow disease.21 Given the
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central role of proteins in health and disease, understanding their struc-
ture, dynamics, and functions is of paramount importance not only for
the field of molecular biology but also for developing novel therapeutic
strategies.22,23

Historically, the concept of proteins can be traced back to the early 19th
century, when the Dutch chemist Gerardus Johannes Mulder analyzed
various organic compounds and found that they share a common macro-
molecule, later coined ”protein”.24 Almost a century later, in 1926, James
B. Sumner made an important discovery that furthered our understand-
ing of proteins. He was the first person to ever successfully crystallize
an enzyme, urease, and thereby showed that enzymes represent chemical
entities with a specific molecular structure.25 Twenty years later, when
he received the Chemistry Nobel Prize for this discovery, it had become
clear that all enzymes are proteins. Another Chemistry Nobel Prize cen-
tral to protein science was awarded in 1958 to Frederick Sanger for de-
termining the sequence of insulin, thereby laying the foundations for
modern protein sequencing.26 The same year, the field achieved another
breakthrough when John Kendrewii unveiled the first three-dimensionalii Looking at the structure of myo-

globin, Kendrew et al. had directly rec-
ognized the great challenge protein fold-
ing imposes, a problem that still remains
partially unsolved despite decades of
progress,27 especially in the field of arti-
ficial intelligence:28,29 ”Perhaps the most
remarkable features of the molecule are
its complexity and its lack of symmetry.
The arrangement seems to be almost to-
tally lacking in the kind of regularities
which one instinctively anticipates, and it
is more complicated than has been pred-
icated by any theory of protein structure.
Though the detailed principles of construc-
tion do not yet emerge, we may hope that
they will do so at a later stage of the anal-
ysis.”30

structure of a protein by X-ray crystallography—a pioneering achieve-
ment that earned him the Nobel Prize in Chemistry together with Max
Perutz just four years later.30,31 This work set the stage for the field of
structural biology, which aims at explaining biomolecular mechanisms
through the lens of the structure of proteins and other biomolecules.32

These pioneering discoveries contributed to a central paradigm of struc-
tural biology, namely that the sequence of a protein determines its struc-
ture, which in turn determines its function. This idea was eventually for-
malized by Nobel laureate Christian Anfinsen (”Anfinsen’s dogma” ), who
advocated that, under physiological conditions, the native structure of a
protein is determined by its acid sequence alone.33 However, this is only
part of the story: Proteins are dynamic systems whose function often
emerges from conformational changes between their metastable states.
Moreover, intrinsically disordered proteins,iii which make up about 30%iii A particularly impressive example

for intrinsically disordered proteins can
be found in tardigrades (also known
as water-bears). Tardigrades are micro-
scopic animals that can endure extreme
conditions, including desiccation, radia-
tion and temperatures as low as 𝑇 =
−273∘C, which even allows them to sur-
vive in space.34 When exposed to des-
iccation, the tardigrade-specific IDP is
expressed and forms a glass-like matrix
that physically prevents protein denat-
uration, aggregation and membrane fu-
sion.35

of the eukaryotic proteome,36 completely lack a stable tertiary structure
and yet perform crucial functions in cell signaling and regulation.37,38

These findings expanded our understanding of the structure-function re-
lationship, leading to a paradigm shift that now recognizes protein dy-
namics as a crucial link between structure and function:39

Sequence → Structure → Dynamics → Function

With the growing recognition of protein dynamics’ importance, the re-
quirement for new experimental and computational tools to study these
motions has become apparent. On the one hand, several decades of
technological advances have led to experimental techniques capable of
obtaining detailed structural snapshots of protein through complemen-
tary techniques: X-ray crystallography30,31 revealed the first protein
structures, nuclearmagnetic resonance spectroscopy40–43 allowed for the
study of protein dynamics in solution, and cryo-electronmicroscopy44–46

enabled macromolecular structure determination without the need for
crystallization. On the other hand, time-resolved techniques such as
ultrafast transient absorption spectroscopy,47 time-resolved X-ray spec-
troscopy,48,49 or time-resolved infrared spectroscopy50 track protein mo-
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tions across different temporal regimes. Although all of these methods
have significantly increased our understanding of protein structure and
dynamics, each one faces fundamental trade-offs in spatial or temporal
resolution.

Physics-based molecular dynamics simulations act as a powerful comple-
mentary tool to experimental approaches, serving as a ”computational
microscope” that bridges spatiotemporal resolution gaps by providing
atomic-level descriptions of dynamic processes that might be inacces-
sible to conventional observation methods.51–54 By numerically solving
Newton’s equations of motion for all atoms, molecular dynamics sim-
ulations can reveal mechanistic insights into protein function, such as
conformational changes between metastable states, allosteric signaling
pathways, ligand binding or unbinding events, and folding intermedi-
ates.55,56 And the progress in molecular dynamics simulations over the
past decades has been nothing short of remarkable: the first simulation
of a protein—the relatively small bovine pancreatic trypsin inhibitor—
in 1977 lasted just 8.8picoseconds, did not include water, and involved
less than 600 atoms.51 Today, with special-purpose supercomputers like
Anton3,57 molecular dynamics simulations can routinely reach microsec-
onds to even milliseconds timescales, capturing the dynamics of biolog-
ically relevant systems containing millions of atoms, including explicit
solvent.58–60 However, the evolution of molecular dynamics simulations
has not been limited to hardware advancements. In parallel, significant
processes in force fields,61–63 enhanced sampling techniques,64–68 and
the integration of machine learning methods69–72 have also led to re-
markable improvements. Collectively, these advancements have dou-
bled the accessible timescales reached by atomistic molecular dynamics
simulations approximately every 1.3 years over the past four decades—
outpacing Moore’s law.73,74

Despite these advances—and despite the governing equations of protein
dynamics being well understood—extracting meaningful insights from
vast amounts of data continues to be challenging. Later Nobel laureate
Philip W. Anderson famously captured these difficulties in his seminal
article ”More Is Different”,75 where he introduced the concept of broken
symmetry: for larger and more complex aggregates of elementary parti-
cles (including proteins), it is not sufficient to understand the collective
behavior in terms of the individual particles. Instead, entirely new prop-
erties of such systems emerge at each level of complexity, requiring com-
pletely new concepts and generalizations to understand the increasingly
complex behavior of larger systems.

Additionally, the inherent stochasticity and high dimensionality of com-
plex proteins render analytical derivations and first principle models im-
practical, driving a shift towards data-driven approaches—a paradigm
fueled by the rapid advancements in machine learning and the grow-
ing availability of large-scale simulation datasets. A common strategy
to this end involves projecting the high-dimensional data onto a lower-
dimensional set of collective variables 𝒙 = {𝑥𝑖} that characterize the dom-
inant biomolecular motion. These collective variables are designed to
capture the most important conformational changes in the protein and
are theoretically motivated through the manifold hypothesis76, iv iv For proteins, themanifold hypothesis

physically translates into nonlinear cou-
plings in the protein giving rise to coop-
erative effects that effectively reduce the
total number of degrees of freedom.77

—the as-
sumption that high-dimensional biomolecular motions can be described
by only a few intrinsic degrees of freedom.78–81
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If the collective variables effectively encode the dominant dynamics, the
biomolecular process of interest can be mapped onto a free energy land-
scape Δ𝐺(𝒙) ∼ − ln 𝑝(𝒙), where 𝑝(𝒙) is the equilibrium probability dis-
tribution of the collective variables. Within this free energy landscape,
metastable conformations of the protein correspond to local minima that
are separated by kinetic barriers characterizing the transition pathway.77

This perspective naturally motivates the application of Markov state
models—a kinetic framework that discretizes the collective variables into
a set of metastable states and consequently approximates the protein
dynamics in terms of memoryless jumps between these states.82–89 This
approximation is only justified when a timescale separation between fast
intrabasin fluctuations and slow interbasin transitions exists, which then
reflects the Markov property: once the trajectory enters a metastable
basin, its prior history becomes irrelevant for predicting the future dy-
namics. Crucially, Markov state models can leverage long-timescale
dynamics from an ensemble of short molecular dynamics simulationsv,v After discretization of the collective

variables into a set of metastable states,
Markov state models estimate a transi-
tion probabilitymatrix 𝑻(𝜏lag) over a lag
time 𝜏lag and then propagate the dynam-
ics via the Chapman-Kolmogorov equa-
tion 𝑻(𝑛𝜏lag) = 𝑻(𝜏lag)𝑛.

effectively bridging computationally accessible microsecond timescales
with biologically relevant timescales of milliseconds to seconds.90,91 As
trajectories are only required to reach local minima, running parallelized
simulations enables the exploration of rare events such as protein folding,
allosteric transitions, or ligand binding events.91–95

However, this idealized scenario, where the collective variables can be
chosen such that a clear timescale separation between the slow func-
tional dynamics and the fast intrabasin fluctuations exists, faces signif-
icant practical challenges when constructing the Markov state model.
More precisely, in the context of molecular dynamics simulations of pro-
tein, such a workflow typically involves:77,96

1. The first step is the selection of a suitable set of coordinates that
decouples the protein’s internal motion from its global translations
and rotations within the simulation box. Common choices include
internal coordinates, such as interresidual distances and dihedral
angles, but the ideal type of coordinate strongly depends on the
process under study.80,95,97,98

2. Feature Selection: Within the chosen coordinate system, a small
subset of relevant coordinates is selected that effectively describes
the process of interest.99–102, vi This step seeks to enhance thevi For example, consider the coordinate

system of inter-residual distances: For
a protein with 𝑁 amino acids, 𝑁(𝑁 −
1)/2 distances can be computed. Many
of these contain highly redundant infor-
mation or are constant due to the struc-
tural stability of the protein (e.g. ter-
tiary structure). Only a small fraction of
these distances is typically relevant for
the process of interest.1,2

signal-to-noise ratio and, therefore, significantly impacts the qual-
ity of the resulting model: Garbage in, garbage out.103,104

3. Feature Extraction then projects this selected subset into a lower-
dimensional space of collective variables, mitigating the effects of
the curse of dimensionality and enabling density-based estimates.
This greatly facilitates subsequent analysis, such as constructing
the free energy landscapeΔ𝐺(𝒙). Common feature extraction tech-
niques include principal component analysis,80,105,106 time-lagged
independent component analysis107 or, popular nonlinear dimen-
sionality reduction techniques such as, e.g., multidimensional scal-
ing,108 t-SNE,109 or UMAP.110 Recently, deep learning architectures
have also been successfully applied to this task, the most popular
being autoencoders111–115 or Boltzmann generators.116

4. The trajectory, now expressed in terms of collective variables, is
discretized by clustering into metastable microstates—ensembles
of structurally similar configurations.69 Geometrical clustering al-
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gorithms such as 𝑘−means117 or density-based approaches do the
job.115,118–120

5. In the next step, dynamical lumpingmerges microstates dynam-
ically into macrostates—groups of microstates that are kinetically
strongly connected and share the same basin in the free energy
landscape. This step facilitates human interpretation of the model
while preserving the key characteristics of the model, such as the
slowest timescales or important intermediates.121–123

6. Then, finally, the Markov state model is constructed by estimating
the transition probability matrix 𝑻(𝜏lag) for a specific lag time,
approximating the protein dynamics as a memoryless Markov pro-
cess between the obtained macrostates. To this end, more steps are
often required in order to obtain a meaningful model. Examples
include dynamical coring,124 hidden Markov state models,125 the
inclusion of memory,126–128 or better estimates for the transition
matrix given a dynamical lumping.129

While the workflow outline above—from a high-dimensional molecular
dynamics simulation towards a Markov state model—has provided pro-
found insights into biomolecular dynamics, it is not without its limita-
tions. The whole procedure, spanning from the selection of the coordi-
nate system, feature selection, feature extraction, geometric clustering,
and dynamical lumping into macrostates, inevitably involves many sim-
plifications and approximations that lead to a loss of information.

Thus, the predictive performance of a Markov state model (or any other
model) is fundamentally limited by the information content of its input
features. Hence, feature selection must carefully balance the trade-off
between relevance and sparsity: including too many irrelevant or redun-
dant coordinates can obscure relevant dynamics, while overly aggressive
filtering risks omitting important degrees of freedom, potentially violat-
ing Markovianity. An optimal feature selection not only preserves the
essential protein dynamics but also improves the predictive power of the
resulting model and helps to understand the biomolecular mechanisms
in terms of a few, but very important coordinates. This challenge is am-
plified by the strong link to feature extraction: suboptimal coordinate
choices propagate through subsequent analysis steps, leading to models
not capable of describing the proteins’ essential dynamics.

For instance, principal component analysis prioritizes geometric vari-
ance over kinetic relevance, potentially masking important slow degrees
of freedom with irrelevant large amplitude motions like dangling ter-
mini.77 Similarly, the focus of the time-lagged independent component
analysis on the slowest timescales may struggle to distinguish between
rare functional transitions and slow but non-functional motion like tran-
sitions between left- and right-handed helices, where one of them is
hardly populated.95 Yet, linear methods like principal component anal-
ysis or time-lagged independent component analysis remain the most
popular choices for feature extraction due to their interpretability and
computational efficiency.77,106,107,130 Since these linear methods rely on
orthogonal projections, their ability to resolve nonlinear conformational
changes in the data is fundamentally limited. While this does not neces-
sarily pose a problem for high-dimensional spaces, it can become a signif-
icant limitation when the desired latent representation must be limited
to a few dimensions.104,131 Nonlinear methods offer more variability in
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this regard, but they are prone to overfitting, which is why they need to
be properly regularized.112,115,132–134

Outline

In this thesis, we address two of themajor tasks that have to be performed
prior to constructing a dynamical model, namely the steps of feature se-
lection and feature extraction. Modern molecular dynamics simulations
routinely generate vast amounts of data by describing the motion of pro-
teins along all 3𝑁 Cartesian coordinates of each 𝑁 atoms. While arguably
all of these atoms contributed to the function of the protein through the
folding process, the proteins’ functional dynamics can be described by
only a small fraction of the degrees of freedom.

To extract the relevant information from the data, we introduce a feature
selection method—called MoSAIC—in the chapter 3 that systematically
identifies this small subpart of the coordinates that perform collective
motion and separates it from noisy coordinates describing thermal fluc-
tuations and non-functional movements. We identify these functional
groups of coordinates by block-diagonalization of a similarity matrix be-
tween internal coordinates. Balancing computational efficiency while
accurately capturing statistical dependencies, the Pearson correlation co-
efficient represents an excellent choice for the similarity measure.

However, the Pearson correlation coefficient suffers from a range of
drawbacks in certain scenarios—especially in the context of multidimen-
sional coordinates. Therefore, we propose a new nonparametric estima-
tor for normalizedmutual information in the chapter 4 that captures non-
linear statistical dependencies beyond the limitations of Pearson correla-
tion and can be readily employed for multidimensional coordinates.

In chapter 5, we demonstrate the effectiveness of these two approaches
by conducting a comprehensive analysis of the open↔closed allosteric
transition of the protein T4 lysozyme. Both correlation-based approaches
systematically reveal different aspects: the local interaction patterns
identified by MoSAIC explain the molecular mechanisms underlying the
transition, while the resulting global conformational changes are cap-
tured by normalized mutual information.

Moving beyond instantaneous correlations, we turn to temporal dynam-
ics and propose two complementary feature extraction techniques in
the chapter 6, which combine the expressive power of neural networks
with physical constraints and hence enable the construction of physi-
cally meaningful models. First, using graph neural networks, we in-
troduce an autoencoder network that directly operates on the proteins’
graph structure and thus mimicking a local propagation of perturbations
throughout the protein. This results in robust, physically meaningful,
low-dimensional representations of the data. Second, considering the se-
quential nature of molecular dynamics simulations, we employ Gaussian
processes to model its temporal relationships. By using the Gaussian pro-
cesses as a prior in a Bayesian framework for representation learning, we
obtain low-dimensional embeddings that preserve the Markovian prop-
erties in the input data.
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2.1 Proteins

A protein molecule is a chain of amino acids that are linked together by
covalent peptide bonds, which is why proteins are also called polypep-
tides. As noted in the introduction, these biomolecules exhibit remark-
able functional diversity due to variations in their size and shape.

To adapt to their unique shape and function, proteins can rely on 20 dif-
ferent proteinogenic amino acids acting as fundamental building blocks.
Structurally, all amino acids share a common structure, namely

⋅ an amino group (NH2),
⋅ a central carbon atom, referred to as C𝛼 atom, to which the side
chain R is attached,

⋅ and a carboxyl group (COOH).

Figure 2.1 | Proteins are chains of amino
acids linked together by covalent pep-
tide bonds. By the removal of water,
the carbon atom of the carboxyl group
(shown here: phenylalanine) shares elec-
trons with the nitrogen atom of the
amino group of another amino acid
(here: alanine) to form a peptide bond.

By sharing electrons between the carbon atom of the carboxyl group
from one amino acid and the nitrogen atom of the NH2 group of an-
other amino acid, the proteins’ primary structure (amino acid sequence)
is established. This condensation reaction, where a water molecule is
eliminated, is called a peptide bond (see Fig. 2.1) and leads to the forma-
tion of the protein backbone, a repeating sequence of N-C𝛼-C atoms (see
Fig. 2.2). The asymmetry of amino acids introduces directionality to the
amino acid chain: the end with the free amino group is referred to as the
N-terminus, and the other end carrying the free carboxyl group is named
C-terminus.14

The secondary structure of proteins refers to regular, repetitive struc-
tural motifs stabilized by hydrogen bonds that form between NH and CO
groups in the backbone.135 Among the most common secondary struc-
tures are:

⋅ 𝛼-helices, where the NH group of the 𝑖-th amino acid hydrogen
bonds to the CO group of the (𝑖 + 4)-th amino acid, and

⋅ 𝛽-sheets, in which several adjacent segments of the backbone are
connected by hydrogen bonds between NH and CO groups.

At the tertiary structure level, the overall three-dimensional fold of a pro-
tein is primarily stabilized by interactions among the side chains R of dif-
ferent amino acids. The unique chemical characteristics of each amino
acid side chain—including polarity, charge, size and hydrophobicity—
result in a complex network of interactions that determine the final shape
of the protein. For example, hydrophobic amino acids like leucine or va-
line try to avoid contact with surrounding water molecules by clustering
together in the interior of the folded protein, while polar side chains like
e.g. lysine form hydrogen bonds with water molecules on the protein
surface.14
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These interactions result in a vast number of possible conformations, but
the final number of (meta-)stable folded structures is relatively small due
to energetic constraints: the native fold of the protein minimizes the
protein’s free energy Δ𝐺, defined through a balance of stabilizing inter-
actions such as hydrogen bonds or hydrophobic side chains and destabi-
lizing factors such as conformational entropy.39

Figure 2.2 | Structure of a protein con-
sisting of amino acids linked along the
backbone N-C𝛼-C and side chains R. The
section of the protein shown here con-
sists of the amino acids with their dif-
ferent side chains: phenylalanine (R(−1)),
alanine (R), and glutamine (R(+1)). We
also introduce the two dihedral angles
𝜑 and 𝜓, defined by the bond between
the 𝐶(−1)-𝑁-𝐶𝛼-𝐶 atoms and 𝑁-𝐶𝛼-𝐶-
𝑁(+1) atoms, respectively.

As far as this thesis is concerned, the first three levels of protein struc-
ture fully describe the proteins studied here as they function as single
units. However, for the sake of completeness, it is worth mentioning the
quaternary structure of proteins, which describes the structural arrange-
ment in (large) proteins consisting of at least two smaller protein chains.
Since this requires interactions among multiple individually folded and
structurally stable protein chains, quaternary structure is typically a fea-
ture more common in larger proteins (in contrast to the first three levels
of protein structure, which every protein possesses).

2.2 Molecular Dynamics Simulations

As outlined above, the interactions between all the atoms constituting
the protein, as well as the interactions between them and their surround-
ing solvent, ultimately determine the dynamics of the protein. While the
underlying physical equations that govern the atomistic motions are well
understood (i.e., the Schrödinger equation), their application to systems
like proteins is computationally (still) not feasible due to their size and
structural complexity.13

Instead, molecular dynamics (MD) simulations offer the best current al-
ternative to approximate the dynamics of proteins in high spatiotem-
poral resolution. MD simulations rely on a number of approximations,
such as neglecting relativistic effects, the decoupling of electronic and
nuclear motion via the Born-Oppenheimer approximation, and the treat-
ment of the atom nuclei as classical point particles. Effectively, these
assumptions allow us to approximate the dynamics of a protein classi-
cally through Newton’s equations of motion describing the conservative
forces acting on all 𝑁 atoms

𝑚𝑖
d2𝒓𝑖
d𝑡2 = −∇𝒓𝑖

𝑈(𝒓1, … , 𝒓𝑁). (2.1)

Here, 𝒓𝑖 denotes the position of atom 𝑖 with mass 𝑚𝑖 and ∇𝒓𝑖
𝑈 is the gradi-

ent of the potential with respect to 𝒓𝑖. Numerical integration of Eq. (2.1)
for all atoms using an appropriate step size, typically in the femtosecond
range,i yields the time evolution or trajectory of the system.i This is due to fast vibrational motion

in the C-H bonds of the protein.
The potential energy 𝑈, also called force field, in Eq. (2.1) contains empir-
ical terms modeling the interactions between atoms in the protein and
its surrounding solvent. As shown in Fig. 2.3, two classes of interactions
are typically distinguished: bonded and nonbonded interactions

𝑈 = 𝑈bonded + 𝑈nonbonded. (2.2)

Here, the bonded term includes interactions between neighboring atoms
that are covalently bound, such as bond stretching, bond bending, and
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Figure 2.3 | Force field model of the dy-
namics of a protein. The energy com-
ponents of a typical force field: In a
spring-like picture, bonded interactions
are modeled by harmonic potentials
and several metastable conformations
are allowed by the torsional potential.
Nonbonded interactions between non-
covalently bound atoms are modeled by
Lennard-Jones potentials and Coulom-
bic interactions.

bond torsion. The harmonic potentials governing bond stretching and
bond bending mimic Hooke’s law for springs, where the restoring force

is linear in the displacement from the equilibrium position (𝑑𝑖𝑗 − 𝑑eq
𝑖𝑗 )

2

or (𝜃𝑖𝑗𝑘 − 𝜃eq
𝑖𝑗𝑘)

2

𝑈stretch = ∑
𝑖,𝑗

𝐾𝑖𝑗 (𝑑𝑖𝑗 − 𝑑eq
𝑖𝑗 )

2
, (2.3)

𝑈bend = ∑
𝑖,𝑗,𝑘

𝐾𝑖𝑗𝑘 (𝜃𝑖𝑗𝑘 − 𝜃eq
𝑖𝑗𝑘)

2
. (2.4)

Here, 𝐾𝑖𝑗 and 𝐾𝑖𝑗𝑘 (as well as 𝐾𝑖𝑗𝑘𝑙 later) denote the force constants and
are parameterized for all kinds of different combinations of atoms 𝑖, 𝑗, 𝑘, 𝑙.
While this is straightforward for bond stretching, the bond bending term
can be thought of as an angular spring. For proteins, in general, bond
stretching is much stiffer than bond bending 𝐾𝑖𝑗 ≫ 𝐾𝑖𝑗𝑘. Unlike the two
harmonic terms, the torsional potential hasmultipleminima andmaxima
along the torsion angle 𝜙𝑖𝑗𝑘𝑙—also called the dihedral angle—and is given
by

𝑈torsion = ∑
𝑖,𝑗,𝑘,𝑙

𝐾𝑖𝑗𝑘𝑙 [1 + cos(𝑛𝜙𝑖𝑗𝑘𝑙 − 𝜙eq
𝑖𝑗𝑘𝑙)] . (2.5)

This means that these resulting torsional degrees of freedom (d.o.f.) can
readily adopt different conformations (given that the energy barriers are
sufficiently low), resulting in them being the primary source of confor-
mational changes within the protein backbone.13

In contrast to the bonded terms, which describe local interactions be-
tween neighboring atoms, the nonbonded terms in Eq. (2.1) model inter-
actions between non-covalently bound atoms. To this end, only atom
pairs 𝑙 and 𝑚 that are at least separated by three or four intervening
bondsii are included. Interactions between uncharged atoms are mod- ii Here, we use 𝑙 and 𝑚 instead of 𝑖

and 𝑗 for the atom indices to emphasize
that they are not neighboring atoms as
shown in Fig. 2.3. 𝑑𝑙𝑚 denotes the dis-
tance between atoms 𝑙 and 𝑚.

eled by the Lennard-Jones potential [first two terms in Eq. (2.6)], while
Coulomb’s law additionally accounts for the electrostatic interactions
(last term)

𝑈nonbonded = ∑
𝑙<𝑚

⎡⎢
⎣

⎛⎜
⎝

𝑎𝑙𝑚
𝑑12

𝑙𝑚

⎞⎟
⎠

− ⎛⎜
⎝

𝑏𝑙𝑚
𝑑6

𝑙𝑚

⎞⎟
⎠

+ 𝑞𝑙𝑞𝑚
𝜖𝑑𝑙𝑚

⎤⎥
⎦

. (2.6)



10 2 Theory & Methods

𝑎𝑙𝑚 specifies the Lennard-Jones repulsive strength, while 𝑏𝑙𝑚 is the attrac-
tion coefficient, and 𝑑𝑙𝑚 the interatomic distance. The Coulombic term
consists of the charges of atoms 𝑙 and 𝑚 with 𝑞𝑙 and 𝑞𝑚, respectively, and
𝜖 is the effective dielectric constant.

All the parameters above have been parameterized through classical lab-
oratory experimental data or quantum mechanical calculations to faith-
fully approximate the dynamics of proteins and other biomolecules at
computational scales far below the quantum mechanical level.53 These
parameters, in combination with the functional form of the potential,
are called force fields. Popular force fields for MD simulations are e.g.
AMBER,63,136 GROMOS,137,138 or CHARMM.62

2.3 From Complexity to Clarity:
Dimensionality Reduction

In MD simulations, the configuration of a protein is fully described
at any time step 𝑡 by its 3𝑁-dimensional Cartesian coordinates 𝒓 =
((𝑟1)𝑥, … , (𝑟𝑁)𝑧) and the corresponding momenta 𝒑𝒓 (neglecting the sol-
vent d.o.f.). In classical mechanics, both variables (𝒓, 𝒑𝒓) together define
the state of the system in the 6𝑁-dimensional phase space. However,
as the autocorrelation functions of the velocities decay rapidly in the
picosecond time range while conformational changes typically occur on
the microsecond to millisecond timescale, the momenta are commonly
neglected in the analysis of the protein dynamics.39,139,140

For a typical protein consisting of 𝑁 ≈ 103–105 atoms, this still leaves us
with such a high dimensionality that it is neither possible nor desirable to
follow the dynamics of each atom individually in full detail. Furthermore,
given that a typical MD simulation of a protein usually outputs between
104 and 106 time steps (despite being computed over significantly more
time steps due to the femtosecond time step), we are faced with a con-
figuration space where most of the regions are empty—a phenomenon
well known and feared as the curse of dimensionality.131,141 Therefore, the
analysis of protein dynamics in full space, e.g., by characterizing a free
energy landscape, is forbidden because it is basically impossible to esti-
mate a probability density function in such empty spaces faithfully.142,143

Fortunately, the atomic coordinates of a protein are not randomly or even
uniformly distributed in the configuration space, but due to high correla-
tions among the atomic coordinates of biomolecular systems, they rather
live on a low-dimensional manifold in ℝ3𝑁 .iiiiii In fact, this is true for most natural

high-dimensional datasets, which is for-
mulated by the manifold hypothesis.144
This motivates the use of dimensionality
reduction techniques and is the basis for
success in whole fields of machine learn-
ing and statistics, which is why some
even call this effect the blessing of dimen-
sionality.145

This motivates the search for a low-dimensional set of collective vari-
ables (CVs) that capture the most relevant dynamics of the biomolec-
ular process of interest while discarding irrelevant d.o.f., such as fast
vibrational motion or coordinates that remain constant throughout the
simulation—a procedure coined dimensionality reduction.77 Generally
speaking, the dimensionality reduction workflow for MD simulations
consists of several major steps that ultimately aim to construct inter-
pretable models of the protein dynamics. Typically, this process in-
volves:

1. Choice of a suitable coordinate system
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2. Feature selection
3. Feature extraction
4. Clustering of metastable states in the reduced dimensional space
5. Construction of kinetic models

While some of these steps are more specific to the analysis of MD sim-
ulation data and require domain-specific knowledge, such as the choice
of a suitable coordinate system or the model-building step, others are
commonly used in all fields of machine learning, especially feature selec-
tion and feature extraction.141 Clustering is not necessarily required for
all applications but is crucial in the context of Markov state models (see
Sec. 2.4).

2.3.1 Choice of Suitable Coordinate Systems

Cartesian coordinates are generally not well suited for dimensionality
reduction due to their inevitable mixing of internal motion with global
translation and rotation of the protein within the solvent.97

A common attempt to circumvent this problem is to apply a rotational
and translation fit,146 which removes global rotation and translation by
aligning the trajectory to a reference structure through the minimiza-
tion of the atomic least square distances. However, this approach fails
to address the core issue: due to its flexibility, a protein can still exhibit
relative rotational motion between different parts, even under zero-total
angular momentum conditions.147

Instead, internal coordinates, such as the dihedral angles 𝜑/𝜓 or inter-
residual distances 𝑑𝑖𝑗, are not plagued by this problem because they de-
couple internal and global motion by definition. Since the force field is
given in terms of such internal coordinates (compare Sec. 2.2), they rep-
resent a natural choice for further analysis of the MD simulation data.

Dihedral Angles

Dihedral angles (𝜑, 𝜓, see Fig. 2.2) are particularly useful for describing
the formation of secondary structures, such as 𝛼-helices or 𝛽-sheets.148,149
However, their periodicity, (𝜑, 𝜓) ∈ [−𝜋, 𝜋], requires an appropriate
treatment in order to prevent discontinuities in the data. Accounting
for the circular statistics, this can be achieved by either gap-shifting the
data such that the maximal gap is shifted to the periodic boundary150, iv iv In the (𝜙, 𝜓)-conformational space,

most residues only populate small areas,
leaving natural gaps that can be placed
at the periodic boundary.150

or transforming the angles into the (linear) metric coordinate space:151

𝜑 ↦
⎧{
⎨{⎩

𝑥 = cos(𝜑)
𝑦 = sin(𝜑).

(2.7)

While they scale linearly with the size of the protein, dihedral angles
only indirectly capture the formation of the important tertiary structure
of a protein, which significantly reduces their applicability for describing
global conformational dynamics of proteins.95
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Inter-residual Distances

In contrast, inter-residual minimal distances 𝑑𝑖𝑗 (as shown in Fig. 2.4) be-

Figure 2.4 | Calculating the minimal dis-
tance between two residues requires the
computation of all pairwise distances be-
tween the heavy atoms of both residues.

tween the closest heavy (i.e., non-hydrogen) atoms of two residues 𝑖 and
𝑗 have been shown to faithfully capture the structural changes in the ter-
tiary structure of a protein (only a few representatives shown here).80,95

and is defined by

𝑑𝑖𝑗(𝑡) = min𝑛,𝑚 |𝒓𝑖,𝑛(𝑡) − 𝒓𝑗,𝑚(𝑡)|. (2.8)

Here, 𝑛 and 𝑚 are the indices of the heavy atoms of residues 𝑖 and 𝑗. Of
course, this is not limited to heavy atoms but can also be applied to the C𝛼
atoms of the residues, which then focuses more on the backbone of the
protein. However, since we are interested in the physicochemical pro-
cesses that govern structural changes, minimal distances between heavy
atoms come in handy as they directly report on interactions between
the side chains, such as bonds. Focusing on bonds or contacts also helps
to circumvent the largest drawback of inter-residual distances, which
is their quadratic scaling 𝒪(𝑁2) with respect to the number of residues
𝑁: either focusing on native contacts152, vor on distances that form av The use of only native contacts is mo-

tivated by the ”principle of minimal frus-
tration”, which hypothesizes that evolu-
tion has led to strong correlations be-
tween native contacts and protein fold-
ing landscapes in order to guarantee effi-
cient folding via smooth, funneled path-
ways without misfolding traps.153

contact during the course of the simulation,80,95 can significantly reduce
complexity while simultaneously highlighting the most relevant interac-
tions. Commonly, two residues 𝑖 and 𝑗 are considered to be in contact if
their minimum distance 𝑑𝑖𝑗 is below a certain threshold, typically set to
𝑑𝑖𝑗 ≤ 0.45nm.80

2.3.2 Feature Selection

The process of restricting analysis to only a subset of the available
coordinates—such as e.g. only focusing on contact distances—is referred
to as feature selection.154,155 Yet, it might be beneficial to even further nar-
row down the coordinate selection as many biologically relevant struc-
tural changes are spatially confined. Hence, only a small subset of the
internal coordinates is typically involved in a specific biomolecular pro-
cess, while the remaining coordinates are often uncorrelated or describe
noise.1,2 Examples of this include coordinates that remain stable dur-
ing the functional process (e.g., stable contacts), coordinates that exhibit
random but large-scale motion (e.g., wildly dangling terminal ends), or
coordinates that describe slow but nonfunctional transitions (for exam-
ple, rare transitions between left- and right-handed helices, where the
right-handed one is hardly populated).95,156

The advantages of excluding such irrelevant d.o.f. are manifold: first,
popular feature extraction techniques like principal component analysis
(PCA)105 or time-lagged component analysis (TICA)107 aim to maximize
variance or autocorrelation (see Sec. 2.3.3), respectively, which could lead
to a misclassification of the above-mentioned processes as the most rel-
evant ones. For meaningful subsequent modeling, it is therefore crucial
to exclude large amplitude/slow autocorrelation coordinates that are not
(co)related to the process of interest. Second, internal coordinates, espe-
cially inter-residual distances, extensively carry redundant information
due to overlapping spatial relationships, while PCAworks best with only
a few weakly correlated input coordinates.157 Lastly, feature selection
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can directly shed light onto the most relevant processes, sometimes re-
sulting in a few interpretation-ready coordinates that may explain the
biomolecular process even without further modeling.158

Being one of the main pillars in the field of machine learning, countless
methods have been developed over the last decades. Fundamentally, fea-
ture selection techniques can be categorized into supervised and unsuper-
vised methods, and in the realm of MD simulation analysis, we can distin-
guish between physics-based methods and those that are data-driven.

Physics-based feature selection methods aim to identify key coordinates
leveraging physical principles,vi as done by e.g. the force distribution vi Because physics-based feature selec-

tion techniques rely on prior knowledge
of physically meaningful quantities—
such as regions of interest in a protein
or metastable states—to guide the identi-
fication of key coordinates, they are pre-
dominantly supervised.

analysis,159 which constructs an underlying network of residues based
on pairwise mechanical force and strain differences among residues. An-
other notable example is functional mode analysis, which constructs
a linear collective variable that is maximally correlated with a user-
defined target quantity 𝑓 (𝑡).99 This target quantity 𝑓 (𝑡)—such as solvent-
accessible surface area or cleft volume—is typically physically motivated
and requires a priori biological knowledge, which is why this approach
is supervised. Finally, as a final example of physics-based feature se-
lection, we want to mention committor-based techniques that seek to
determine key coordinates by focusing on transition probabilities be-
tween metastable states.160 Given two metastable states 𝐴, and 𝐵, the
committor 𝑝𝐵 represents the probability of reaching 𝐵 before returning
to 𝐴. Hence, when expressed in terms of a few key coordinates, the
comittor can reveal the governing coordinates that drive the transition
𝐴 → 𝐵.161

In contrast, data-driven approaches exploit statistical relationshipswithin
the data and consult machine learning algorithms to extract important
coordinates. For example, similar to the committor framework, Brandt
et al. use a set of predefined metastable states and an XGBoost ar-
chitecture to rank internal coordinates based on their importance for
classifying a set of metastable states.101,162,163 oASIS164 and spectral oA-
SIS165 characterize datasets through a kernel matrix 𝑪 ∈ ℝ𝑁×𝑁 ,vii mea- vii 𝑁 still denotes the number of data

points here.suring the similarity among data points in the set. By relying on the
Nymström method,166 an optimal feature subset 𝑘 is then selected by
approximating the kernel matrix 𝑪 by a sparse, reconstructed kernel ma-
trix ̃𝑪 = 𝑪𝑘𝑾†

𝑘 𝑪𝑇
𝑘 , where 𝑪𝑘 denotes a subset of 𝑘 columns of 𝑪 and

𝑾𝑘 denotes the kernel matrix of this subset. Last but not least, another
class of data-driven feature selection methods computes the full pairwise
similarity (such as Pearson correlation or mutual information) between
all coordinates in the data set, and subsequent clustering groups these
coordinates into clusters of coordinates with similar behavior.1,167 We
will discuss this in detail in Chapter 3.

2.3.3 Feature Extraction

After having performed feature selection, we now represent the dynam-
ics of the protein in terms of a few key coordinates 𝒙—those that are
most relevant for describing the process of interest—often referred to
as CVs. Despite feature selection, the resulting feature space often re-
mains high-dimensional (typically 101–103 dimensions), which does not
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necessarily allow for straightforward analysis and raises the following
questions:2,77,95

⋅ Can the effective dimensionality be further reduced?
⋅ How can we extract the most relevant information from the subset
of selected coordinates?

Concerning the former question, studies show that the intrinsic dimen-
sion for MD simulation dynamics is in the order of 𝑑 ≲ 10.78–81,150

Assuming the protein system to be in thermal equilibrium, a common
modeling practice is to characterize the state of the protein by its free
energy landscape168

Δ𝐺(𝒙) = −𝑘b𝑇 ln 𝑝(𝒙), (2.9)

where 𝑘b, 𝑇, and 𝑝(𝒙) denote Boltzmann’s constant, temperature, and the
local probability density at 𝒙, respectively. Regions with high local den-
sities 𝑝(𝒙) represent metastable states, while the barriers between them
govern transition kinetics.

However, the construction of free energy landscapes that accurately cap-
ture the dynamics of the protein depends critically on a reasonable den-
sity estimate 𝑝(𝒙). Because high-dimensional data often suffers from
sparsity and noise, the density estimation in such spaces is notoriously
difficult.131,169,170 As a remedy, feature extraction techniques can be em-
ployed, which project the high-dimensional data 𝒙 ∈ ℝ𝐷 into a lower
dimensional latent space 𝒛 ∈ ℝ𝑑, where 𝑑 ≪ 𝐷.viii Such a transforma-viii Unlike feature selection, in which

only a subset of already existing fea-
tures are chosen, feature extraction cre-
ates entirely new features by extracting
the most relevant information from the
input data.

tion 𝒙 ↦ 𝒛 significantly increases the probability density in the latent
space 𝑝(𝒛) compared to the one in the original space 𝑝(𝒙), hence greatly
facilitating subsequent analysis.

Principal Component Analysis
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Figure 2.5 | PCA identifies directions of
maximum variance which can be used
for a low dimensional representation of
the input data.

Due to its simplicity and computational efficiency, principal component
analysis (PCA) is one of the most common techniques for feature ex-
traction.131,171,172 Its goal is to find an optimal low-dimensional represen-
tation 𝒛 ∈ ℝ𝑑 of the high-dimensional input data 𝒙 ∈ ℝ𝐷 by relying
solely on linear orthogonal projections 𝑾 , as depicted in Fig. 2.5. Opti-
mal in this context means that when we first encode (project) the input
data 𝒛 = 𝑓E(𝒙) = 𝑾⊺𝒙 and then decode it back into the original space

̂𝒙 = 𝑓D(𝒛) = 𝑾𝒛, the reconstruction ̂𝒙 should be as close as possible to the
original input 𝒙. This can be achieved by minimizing the loss function ℒ
defined by

ℒ(𝑾) = 1
𝑁

𝑁
∑
𝑛=1

‖𝒙𝑛 − 𝑓D (𝑓E (𝒙𝑛; 𝑾) ; 𝑾)⏟⏟⏟⏟⏟⏟⏟⏟⏟
̂𝒙

‖2. (2.10)

Wewill now show that minimizing this loss in Eq. (2.10) leads to 𝑾 = 𝑼𝑑,
where 𝑼𝑑 contains the 𝑑 eigenvectors with the largest corresponding
eigenvalues of the covariance matrix 𝜮 = 1

𝑁 𝑿⊺
𝑐 𝑿𝑐.131, ix To this end, weix 𝑿𝑐 is the mean free 𝑁×𝐷 data matrix.

consider 𝒙 to be mean free and want to express 𝒙 as a linear combina-
tion of our latent representation 𝒛, 𝒙𝑛 = ∑𝑑

𝑖=1 𝑧𝑛𝑖𝒘𝑖. To simplify the
derivation, we only consider a one-dimensional latent space, meaning
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that we seek a single projection direction 𝒘1 ∈ ℝ𝐷 such that 𝒙𝑛 = 𝑧𝑛1𝒘1,
𝒛1 = [𝑧11, … , 𝑧𝑁1] is the one-dimensional latent representation.x x Higher order projections 𝒘2, 𝒘3 etc.

can be derived through induction (see
e.g. chapter 20.1.2.3 in Ref. 131).

Our goal is to minimize ℒ

ℒ(𝒘1, 𝒛1) = 1
𝑁

𝑁
∑
𝑛=1

∥𝒙𝑛 − 𝑧𝑛1𝒘1∥2 (2.11)

= 1
𝑁

𝑁
∑
𝑛=1

(𝒙⊺
𝑛 𝒙𝑛 − 2𝑧𝑛1𝒘⊺𝒙𝑛 + 𝑧2

𝑛1𝒘⊺
1 𝒘1) . (2.12)

Assuming orthonormality 𝒘⊺
𝑖 𝒘𝑗 = 𝛿𝑖𝑗, we take the derivative w.r.t. 𝑧𝑛1

and set it to zero

0 = 𝜕
𝜕𝑧𝑛1

ℒ(𝒘1, 𝒛1) = 1
𝑁 (−2𝒘⊺

1 𝒙𝑛 + 2𝑧𝑛1) ⇒ 𝑧𝑛1 = 𝒘⊺
1 𝒙𝑛. (2.13)

Substituting back into Eq. (2.12) and ignoring the constant term 𝒙⊺
𝑛 𝒙𝑛

yields

ℒ(𝒘1) = − 1
𝑁

𝑁
∑
𝑛=1

𝑧2
𝑛1 = − 1

𝑁
𝑁

∑
𝑛=1

𝒘⊺
1 𝒙𝑛𝒙⊺

𝑛 𝒘1 = −𝒘⊺
1 𝜮𝒘1, (2.14)

where 𝜮 denotes the covariancematrix (because 𝒙 is mean free). To avoid
trivial optimization by ∥𝒘1∥ → ∞, we constrain the solution to 𝒘⊺

1 𝒘1 = 1
via Lagrange multiplier 𝜆1

ℒ̃(𝒘1) = 𝒘⊺
1 𝜮𝒘1 + 𝜆1 (𝒘⊺

1 𝒘1 − 1) , (2.15)

Derivation w.r.t. 𝒘1 yields

𝜕
𝜕𝒘1

ℒ̃(𝒘1) = 2𝜮𝒘1 − 2𝜆1𝒘1 = 0 ⇒ 𝜮𝒘1 = 𝜆1𝒘1. (2.16)

This shows that the optimal (linear) projection direction [in the sense
of Eq. (2.10)] is an eigenvector of the covariance matrix 𝜮. Further-
more, since we want to maximize Eq. (2.16), we left-multiply 𝒘⊺

1 and
find 𝒘⊺

1 𝜮𝒘1 = 𝜆1, meaning that we select the eigenvector with the
largest corresponding eigenvalue 𝜆1. To sum this up, we directly high-
light the key feature of PCA, namely the link between loss minimization
and variance 𝕍 maximization: taking the expectation value ⟨… ⟩

⟨𝑧𝑛1⟩ = ⟨𝒙⊺
𝑛 𝒘1⟩ = ⟨𝒙𝑛⟩⊺𝒘1 = 0, (2.17)

establishes the connection

𝕍[𝒛1] = ⟨𝒛2
1⟩ − ⟨𝒛1⟩2 = 1

𝑁
𝑁

∑
𝑛=1

𝑧2
𝑛1 − 0 = −ℒ(𝒘1) + const. (2.18)

While this is the standard formulation of PCA, it is often better to use the
correlation matrix instead of the covariance matrix to mitigate the im-
pact of different scales of the input features. This is particularly relevant
for proteins since irrelevant large-amplitude motion, such as wildly dan-
gling terminal residues, would easily overshadow important functional
but small-scale motion.95,98
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Autoencoder

In the last section, we learned how PCA can be used to perform an ”op-
timal” projection of high dimensional input data 𝒙 ∈ ℝ𝐷 onto a low(er)
dimensional bottleneck (latent space) 𝒛 ∈ ℝ𝑑, where 𝑑 ≪ 𝐷, using a lin-
ear and orthogonal mapping. This information bottleneck approach can
be generalized by replacing the linear functions with nonlinear transfor-
mations, which are realized using neural networks. The result is what is
called an autoencoder (AE) consisting of an encoder and decoder part (see
Fig. 2.7).111,173,174 Fewer dimensions in the bottleneck force the network
to efficiently learn a compact yet meaningful representation of the input
data and requires simultaneously discarding irrelevant noise. Analogous
to Eq. (2.10), the standard reconstruction loss for an autoencoder is given
by

ℒ(𝜽, 𝝓) = 1
𝑁

𝑁
∑
𝑛=1

∥𝒙𝑛 − 𝑓D,𝝓 [𝑓E,𝜽 (𝒙𝑛)]∥
2
, (2.19)

where 𝑓E and 𝑓D are the encoder and decoder functions parameterized
by the parameters 𝜽 and 𝝓, respectively. These learnable parameters are
optimized using backpropagation.175,176 Restricting 𝑓E,𝜽 and 𝑓D,𝝓 to linear
functions and assuming the loss corresponds to the mean squared loss
[as in Eq. (2.19)] recovers the latent space identified by PCA, rendering
PCA as a special case of autoencoders.177,178
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Figure 2.6 | Commonly used activation
functions for neural networks.

However, in general, both the encoder and decoder are recursively de-
composed into a composition of simple but nonlinear activation func-
tions 𝑓 (𝑙)

𝜽𝑙
acting at each layer

𝑓𝐸,𝜽(𝒙) = (𝑓 (𝐿)
E,𝜽𝐿 ∘ 𝑓 (𝐿−1)

E,𝜽𝐿−1 ∘ ⋯ ∘ 𝑓 (1)
E,𝜽1 ) (𝒙), (2.20)

where ∘ is the composition operator and 𝜽(𝑙) denotes the learnable pa-
rameters of layer 𝑙 ∈ [1, … , 𝐿]. Two commonly used activation functions
are shown in Fig. 2.6.

Traditional autoencoders use fully connected layers (see Fig. 2.7), in
which the activation 𝑎(𝑙)

𝑘 of each neuron 𝑘 is computed by applying an ac-
tivation function to the weighted sum of all activations from the previous
layer

𝒂(𝑙)
𝑘 = 𝑓 (𝑙)

𝜽(𝑙) (𝑾 (𝑙)𝒂(𝑙−1) + 𝒃(𝑙)) , (2.21)

Figure 2.7 | An autoencoder, consist-
ing of an encoder 𝑓𝐸 (red) and a de-
coder 𝑓𝐷 (blue), represented by a fully
connected feed-forward neural network
with inputs 𝑥1, … , 𝑥𝑛, latent represen-
tation 𝑧1, 𝑧2, and reconstructed outputs

̂𝑥1, … , ̂𝑥𝑛.
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where 𝜽(𝑙) = {𝑾 (𝑙), 𝒃(𝑙), … } includes all learnable parameters for layer 𝑙,
such as e.g. the weight matrix 𝑾 (𝑙) and biases 𝒃(𝑙). Despite the simplic-
ity of the activation functions, introducing these simple nonlinearities
allows neural networks to approximate very complex functions and to
identify important patterns in the data—given that they are deep enough.
This makes them a powerful tool not only for feature extraction.

While Eq. (2.19) is the standard formulation of the autoencoder loss func-
tion, the great flexibility of neural networks allows one to adjust it de-
pending on the problem. For example, Lemke and Peter113 extended the
loss with a sketch-map179 cost function that preserves proximity infor-
mation among data points in the high-dimensional and low-dimensional
space. A comparison between PCA and autoencoders for the Swiss roll
dataset can be found in Fig. 2.8, demonstrating that the autoencoder is
able to capture the nonlinear structure of the Swiss roll but fails to ac-
count for the constant density along the surface of the roll.

Figure 2.8 | Comparison of feature extraction via PCA and autoencoder applied to the Swiss roll dataset (on the left). The original
three-dimensional structure is projected onto two dimensions using PCA (center) and a nonlinear autoencoder (right). Compared to the
PCA, the autoencoder does a better job of capturing the complex, nonlinear relationship of the Swiss roll, but it fails to account for the
constant density along the surface of the roll.

Latent Variable Models

Both PCA and autoencoders operate in a purely deterministic frame-
work; that is, they lack the ability to probabilistically capture continuous
probability densities resulting from iteratively solving Newton’s equa-
tion of motion (see Sec. 2.2). In practice, this limitation is less problem-
atic for PCA due to its restriction to linear mappings, which maintain
proportional relationships between data points in the high- and low-
dimensional space. However, the nonlinearity of autoencoders can re-
sult in ruptures in the probability density that alter the topology and
disrupt the continuity of the latent space (see Fig. 2.8 for an example).
This poses a significant challenge when modeling protein dynamics in
terms of a free energy landscape since, e.g., transition pathways need to
pass through regions with continuous probability density.

Latent variable models address these challenges by introducing a prior dis-
tribution 𝑝(𝒛) over the latent space, transforming deterministic mappings
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into Bayesian frameworks as depicted in Fig. 2.9.180,181 This prior regular-
izes the latent space by encoding our assumptions about the latent struc-
ture before we have observed any data—for instance, enforcing smooth-
ness and connectivity through a simple Gaussian 𝑝(𝒛) ∼ 𝒩(0, 𝟙).112, xixi Such a simple (and non-learnable)

prior obviously oversimplifies the typ-
ically rich structural versatility of MD
simulations, which is why more sophis-
ticated priors have been developed in or-
der to better capture more complex la-
tent embeddings. For example, a Gaus-
sian mixture model can reflect several
metastable states by a multimodal dis-
tribution115 and data-dependent priors,
such as the VampPrior, adapt to the
observed data during training.132 But
physics-informed priors are also investi-
gated, e.g., Tiwary and coworkers con-
structed a prior leveraging the over-
damped Langevin equation to naturally
describe the temporal evolution of the
system.134

In a Bayesian model, the latent variables 𝒛 are probabilistically linked to
the observations 𝒙 via their joint probability density function 𝑝(𝒙, 𝒛) =
𝑝(𝒙|𝒛)𝑝(𝒛), where 𝑝(𝒙|𝒛) is the conditional probability of 𝒙 given 𝒛.180
Crucially for the analysis of MD simulation data, Bayes’ theorem inverts
this relationship

𝑝(𝒛|𝒙) = 𝑝(𝒙|𝒛)𝑝(𝒛)
𝑝(𝒙) , (2.22)

rendering the posterior probability 𝑝(𝒛|𝒙) the central quantity for the iden-
tification of CVs and thus, the construction of meaningful free energy
landscapes Δ𝐺(𝒛) ∼ − ⟨ln 𝑝(𝒛|𝒙)⟩𝒙 .

The observations 𝒙 are modeled to be probabilistically caused by the un-
derlying latent variable 𝒛 through two steps:182

1. 𝒛 ∼ 𝑝(𝒛):xii Sampling according to a priori assumed prior 𝑝(𝒛)xii ∼ means ”is sampled from”

2. 𝒙 ∼ 𝑝(𝒙|𝒛): Given a family of deterministic functions 𝑓𝜽(𝑧) ∶ ℝ𝑑 ↦
ℝ𝐷 parameterized by learnable parameters 𝜽, a deterministic de-
coder maps the sampled latent variables 𝒛 to an observable confor-
mation 𝒙. While the function 𝑓𝜽 is deterministic, 𝒙 = 𝑓𝜽(𝒛) is now
a random variable in the high-dimensional input feature space ℝ𝐷

due to the randomness of 𝒛.

The goal of our model is now to optimize the parameters 𝜽 such that
when samples are drawn from the prior 𝒛 ∼ 𝑝(𝒛) and subsequently de-
coded, the resulting generated high-dimensional conformations 𝒙 = 𝑓𝜽(𝒛)
closely resemble the conformations in the training data. To formalize
this, we seek to maximize the marginal likelihood of each observed con-
formation under the entire generative process,

𝑝(𝒙) = ∫ d𝒛 𝑝(𝒙|𝒛)𝑝(𝒛). (2.23)

The marginal 𝑝(𝒙) (also called evidence) is not only required for the gen-
eration of realistic conformations but also ensures that our assumptions
about the latent structure are included in the posterior [see Eq. (2.22)].
Unfortunately, it is usually intractable for high-dimensional data such
as MD simulations due to the integration over a high-dimensional 𝒛
and becomes a computational hurdle for computing the posterior. A
common strategy in modern Bayesian statistics is thus the use of varia-

Figure 2.9 | Schematic concept of a la-
tent variable model. On the left, a prior
probability distribution 𝑝(𝒛) is shown. 𝒛
resides in a latent space with reduced di-
mensionality 𝑑 ≪ 𝐷. Each sample 𝒛′ ∈
ℝ𝑑 corresponds to a high-dimensional
protein conformation 𝒙′ ∈ ℝ𝐷 via the
stochastic decoder 𝑝(𝒙|𝒛).
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tional inference to approximate probability densities in Eq. (2.22) for large
datasets.180,183

Variational Autoencoders

In order to understand which latent variables 𝒛 explain the sampled ob-
servations 𝒙, we want to compute the posterior distribution 𝑝(𝒛|𝒙). How-
ever, the direct computation via Eq. (2.22) is infeasible due to the in-
tractability of the evidence 𝑝(𝒙). Variational autoencoders (VAEs) ad-
dress this issue by the use of variational inference.112,182,184

To this end, the idea is to approximate the true posterior 𝑝(𝒛|𝒙) by a family
𝒬 of approximate densities over the latent variables, which are easier to
evaluate. While they do not need to be specified yet, we could think
of them as e.g. approximating the complex free energy landscape of a
protein with a collection of harmonic wells.115 Mathematically, the goal
is to find the function 𝑞(𝒛) ∈ 𝒬 that best approximates the true posterior
by minimizing the Kullback-Leibler (KL) divergencexiii xiii The Kullback-Leibler divergence

measures the proximity of two probabil-
ity distributions 𝑝(𝑥) and 𝑞(𝑥) by quan-
tifying how much information is lost
when using 𝑞(𝒙) instead of 𝑝(𝒙):

𝐷kl[𝑝(𝑥) ∥ 𝑞(𝑥)] = ∑
𝑥∈𝒳

𝑝(𝑥) ln 𝑝(𝑥)
𝑞(𝑥) .

It is non-negative, asymmetric and zero
when 𝑝(𝑥) = 𝑞(𝑥).

̃𝑞(𝒛) = argmin
𝑞(𝒛)∈𝒬

𝐷kl [𝑞(𝒛) ∥ 𝑝(𝒛|𝒙)] . (2.24)

The KL divergence is given as

𝐷kl [𝑞(𝒛) ∥ 𝑝(𝒛|𝒙)] = ⟨ ln 𝑞(𝒛) − ln 𝑝(𝒛|𝒙)⟩𝒛∼𝑞(𝒛), (2.25)

where ⟨… ⟩𝒛∼𝑞(𝒛) denotes the expectation over 𝒛. We use Bayes’ theorem
to substitute the intractable posterior and factor out 𝑝(𝒙) of the expecta-
tion since it does not depend on 𝒛

= ⟨ ln 𝑞(𝒛) − ln 𝑝(𝒙|𝒛) − ln 𝑝(𝒛)⟩𝒛∼𝑞(𝒛) + ln 𝑝(𝒙).
(2.26)

Since 𝑞(𝒛) was not specified and could, in theory, be any distribution,
we intentionally construct it such that it depends on 𝒙 to focus on latent
variables 𝒛 that are likely to have generated 𝒙, i.e. 𝑞(𝒛|𝒙). Rearranging
Eq. (2.26) yields the evidence lower bound (ELBO)

ln 𝑝(𝒙) − 𝐷kl [𝑞(𝒛|𝒙) ∥ 𝑝(𝒛|𝒙)]⏟⏟⏟⏟⏟⏟⏟⏟⏟
Approximation error

= ⟨ ln 𝑝(𝒙|𝒛)⟩𝒛∼𝑞(𝒛|𝒙)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Reconstruction

− 𝐷kl [𝑞(𝒛|𝒙) ∥ 𝑝(𝒛)]⏟⏟⏟⏟⏟⏟⏟⏟⏟
Regularization

(2.27)

This equation nicely summarizes the key concept of a VAE: using a la-
tent variable model, the data [described by the log-evidence 𝑝(𝒙)], is ap-
proximated by the ELBO (right-hand side), with the approximation error
quantified by 𝐷kl [𝑞(𝒛|𝒙) ∥ 𝑝(𝒛|𝒙)]. Since the KL divergence is strictly non-
negative, the ELBO provides a lower bound on ln 𝑝(𝒙). Maximizing the
ELBO thus implies 1.) the improvement of the reconstruction accuracy
and 2.) the regularization of the latent space by aligning 𝑞(𝒛|𝒙) with the
prior.

In practice, VAEs use (deep) neural networks:

⋅ An encoder network 𝑞𝜽(𝒛|𝒙), parameterized by learnable parame-
ters 𝜽, maps observations to parameters of distribution over latent
variables (typically mean 𝝁𝜽(𝒙) and variance 𝜮2

𝜽(𝒙))
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⋅ A decoder network 𝑝𝝓(𝒙|𝒛), parameterized through learnable pa-
rameters 𝝓, reconstructs observations from sampled latent vari-
ables

Unlike for deterministic autoencoders which employ a direct mapping
𝒙 → 𝒛 → ̂𝒙, standard backpropagation is not possible for VAEs due to the
non-differentiable sampling step 𝒛 ∼ 𝑞(𝒛|𝒙) prior to reconstruction. As
a remedy, the reparameterization trick112 can be employed, which trans-
forms the non-differentiable sampling step into a differentiable function
with external randomness. Specifically, for the commonly used Gaussian
approximate posterior 𝑞𝜽(𝒛|𝒙) = 𝒩 {𝝁𝜽(𝒙), diag [𝜮2

𝜽(𝒙)]}, this means:

𝒛 = 𝝁𝜽(𝒙) + √𝜮2
𝜽(𝒙) ⊙ 𝝐, (2.28)

where 𝝐 ∼ 𝒩(0, 𝟙) and ⊙ indicates element-wise multiplication. Employ-
ing a Gaussian distribution for both the approximate posterior 𝑞𝜽(𝒛|𝒙)
and prior 𝑝(𝒛) allows us to compute the KL divergence term in Eq. (2.27)
in closed form:

𝐷kl [𝑞𝜽(𝒛|𝒙) ∥ 𝑝(𝒛)] = 1
2 (tr [𝜮2

𝜽(𝒙)] + 𝝁𝑇
𝜽 (𝒙)𝝁𝜽(𝒙) − 𝑑 − ln det [𝜮2

𝜽(𝒙)] ),
(2.29)

where 𝑑 is the dimensionality of the latent space. The calculation in
closed form significantly improves computation efficiency and training
stability.

By connecting latent variable models with deep learning, VAEs offer a
powerful probabilistic framework for analyzing MD simulation: rather
than providing point estimates for protein conformations like a tradi-
tional AE, VAEs naturally capture the uncertainty and thermal fluctua-
tions inherent in sampled trajectories into smooth distributions. VAEs
are successfully applied for designing entirely new molecules185–187 and
are extensively used for the identification of CVs for MD simulation
data.115,134,188–193

2.3.4 Clustering

After having identified suitable CVs to characterize the biomolecular
process of interest, analysis and interpretation might profit from parti-
tioning the conformational space into a set 𝒮 = {𝑆1, … , 𝑆𝑚} of 𝑚 distinct
metastable states—regions or conformations where the protein tends to
remain for a while before transitioning into another state. Such a coarse-
graining of the dynamics enables the calculation of transition statis-
tics, which allows the estimation of important conformational pathways
and/or timescales (see Sec. 2.4).85

While a myriad of different clustering algorithms exist,194,195 their appli-
cation to MD simulation data demands careful selection and parameteri-
zation since there is no problem-agnostic measure that could be assessed
for evaluating the suitability of a specific clustering algorithm. Funda-
mentally, almost all applications of clustering in the field of MD simula-
tions fall into one of the two categories196
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⋅ Partitioning schemes (most notably 𝑘-means117,197 and 𝑘-medoids198)
partition the conformational space through Voronoi-tesselation by
minimizing intra-cluster distances (see Fig. 2.10, left). The number
of clusters 𝑘 must be predefined and, therefore, does not reflect an
intrinsic characteristic of the system.
Partitioning schemes not requiring a predefined 𝑘 are hierarchi-
cal/agglomerative methods that iteratively merge data points ac-
cording to a linkage criterion (such as the smallest inter-cluster
distance). Starting with each data point as its own cluster, the
merging procedure continues until all data points are contained
within one single cluster. This hierarchical sequence of merges
can be visualized as a dendrogram, of which the final clustering
can be obtained by selecting a cutoff value.199

⋅ Density-based schemes118–120,200,201 estimate the probability den-
sity of the conformational space. Regions with locally high density
are regarded as cluster cores and are expanded to include nearby
data points (see Fig. 2.10, right).

Arguably, the most popular clustering algorithm for MD simulation data
is 𝑘-means, which requires the user to specify the number of states 𝑘
beforehand. The algorithm then iteratively relocates the position {𝝁𝑖}𝑘

𝑖=1
of the 𝑘 cluster centers to minimize the within-cluster variance

Σ2 =
𝑘

∑
𝑖=1

𝑁𝑖

∑
𝑗=1

∥𝒛𝑗 − 𝝁𝑖∥
2
, (2.30)

where 𝒛𝑗
xiv is the location of the 𝑗th data point, and 𝑁𝑖 is the number of xiv While the clustering typically takes

place in the latent space with decreased
dimensionality 𝑑 ≪ 𝐷, partitioning
approaches like 𝑘-means or 𝑘-medoids
remain applicable in high-dimensional
spaces as they do not require density es-
timates.

data points in cluster 𝑖.

𝑘-means generally effectively identifies spherical clusters with similar
densities through the Voronoi-tesselation approach (see Fig. 2.10), but it
struggles when it comes to irregular geometries or distributions with
strongly varying densities. For MD simulation data, this poses seri-
ous problems: clusters often fail to align with free energy barriers, and
metastable states might be split into multiple ones, effectively creating
artificial boundaries within a metastable state or, even worse, combin-
ing two kinetically distinct states (as e.g. seen for the three-pointed star
and its neighbor in Fig. 2.10). Even though some heuristics like the ”el-
bow method”202 and silhouette score203 for the optimal choice of 𝑘 exist,
determining an appropriate number of states remains delicate.xv

xv This limitation becomes evident
when computing both measures for uni-
formly distributed data points, which
completely lack any inherent structure:
both methods propose 𝑘 ≥ 1, which
would result in a partitioning that intro-
duces artificial boundaries into perfectly
homogeneous data.

In practice, however, the number of (micro-)states is typically chosen to
be very large (𝑘 ⪆ 103) in order to avoid combining multiple kinetically

z1

z 2

z1

z 2

Figure 2.10 | Comparison of two prin-
cipal clustering approaches for MD data.
For both methods, the clusters are in-
dicated by different colors. Left: parti-
tioning methods such as 𝑘-means or
𝑘-medoids divide the conformational
space into Voronoi cells, where x mark-
ers indicate the cluster centers.
Right: Density-based methods cluster
the data points according to their density
basin. The blue contour lines represent
the density estimate and gray points in-
dicate ”noise” not assigned to a cluster.
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disconnected states into one. Instead, a dynamical coarse-graining of
the (micro-)states is performed afterward, which reduces the number of
states down to a few (macro-)states, allowing for a humanly interpretable
model.129 Popular lumping methods for this purpose include the most-
probable-path algorithm121 or Perron-cluster cluster analysis.86,204,205

On the other hand, density-based methods were developed and adapted
to better align with the physical properties of biomolecular systems. Ro-
bust density-based clustering,150 for example, constructs the free energy
landscape Δ𝐺(𝒛) based on a local estimate of the free energy at every
data point:

Δ𝐺(𝒛′) = −𝑘b𝑇 ln [ 𝑝𝑅(𝒛′)
max𝒛 𝑝𝑅(𝒛) ] , (2.31)

where

𝑝𝑅(𝒛′) =
𝑁

∑
𝑖=1

Θ [𝑅 − 𝑑(𝒛𝑖, 𝒛′)] . (2.32)

Here,Θ [… ] is theHeaviside step function and 𝑑(𝒛𝑖, 𝒛′) is the 𝑑-dimensional

Euclidean distance defined as 𝑑2(𝒛, 𝒛′) = ∑𝑑
𝑗=1 (𝒛𝑗 − 𝒛′

𝑗)
2
. Starting from

the lowest local free energy estimate in Eq. (2.31), the full free energy
landscape can be hierarchically constructed, and regions of locally high
density serve as seed points for the clusters separated by low-density
barriers. This allows to cut metastable states precisely at the free energy
barrier, making density-based approaches more adaptable to the irreg-
ular geometries common in MD simulation data without requiring a
predefined number of states. While these properties make density-based
clustering schemes particularly attractive for MD simulation data, they
are strongly affected by the curse of dimensionality compared to parti-
tioning schemes: faithful density estimation requires low dimensional
spaces of 𝑑 ⪅ 10 dimensions, which is why a prior feature extraction
step is indispensable in this case.

2.4 Markov State Models

Under the core assumption that the system’s future evolution depends
only on its current state (Markov property), the proteins’ dynamics can
be approximated in terms of memoryless jumps by aMarkov State Model
(MSM).85,89 This assumption heavily depends on the selection of CVs and
requires 1.) a clear timescale separation between interstate transitions
and intrastate fluctuations and 2.) ergodicity within the state network
(no kinetically disconnected subsets in 𝒮).

Given a state partitioning 𝒮 = {𝑆1, … , 𝑆𝑚}, the transition statistics can
be extracted by simply counting the pairwise transitions after a lag-time
𝜏lag and storing them in the so-called transition count matrix:

T𝑐(𝜏lag) =
⎛⎜⎜⎜⎜
⎝

#(𝑆1 → 𝑆1; 𝜏lag) … #(𝑆1 → 𝑆𝑚; 𝜏lag)
⋮ ⋱ ⋮

#(𝑆𝑚 → 𝑆1; 𝜏lag) … #(𝑆𝑚 → 𝑆𝑚; 𝜏lag)

⎞⎟⎟⎟⎟
⎠

(2.33)
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The transition count matrix is one of the major strengths of MSMs:
rather than relying on one very long trajectory that samples the com-
plete biomolecular process, transition statistics can be aggregated from
an ensemble of short trajectories (given that they reach local equilib-
rium). Transition probabilities of jumping from state 𝑖 to 𝑗 within the
lag-time 𝜏lag can be obtained by row-normalizing the transition count
matrix

𝑇𝑖𝑗(𝜏lag) =
𝑇𝑐

𝑖𝑗(𝜏lag)

∑𝑚
𝑙=1 𝑇𝑐

𝑖𝑙(𝜏lag)
. (2.34)

The choice of the lag-time 𝜏lag critically impacts the resulting transition
matrix 𝑻 and should be chosen larger than the time required to relax
within the metastable states.126 At the same time, excessive 𝜏lag sacrifices
temporal resolution since the MSM cannot resolve dynamics on shorter
timescales than 𝜏lag. For equilibrium systems, detailed balance ensures
microscopic reversibility:

𝜋𝑖𝑇𝑖𝑗 = 𝜋𝑗𝑇𝑗𝑖, (2.35)

where the stationary distribution 𝜋𝑖 of state 𝑖 is defined through the left
eigenvalue problem

𝝅𝑻 = 𝝅 (2.36)

with dominant eigenvalue 𝜆 = 1. From the remaining eigenvalues 𝜆 < 1,
the implied timescales 𝑡𝑖 can be derived

𝑡𝑖(𝜏lag) = −
𝜏lag

ln𝜆𝑖(𝜏lag) , (2.37)

corresponding to the slowest dynamical processes between themetastable
states of the system. Furthermore, they represent interesting kinetic
properties that can be directly compared to experiments.93 This might
aid atomistic understanding of biomolecular processes in cases where
experimental structural information is unavailable.

The Markov property is validated by the Chapman-Kolmogorov equa-
tion86

𝑻(𝑘𝜏lag) = [𝑻(𝜏lag)]
𝑘

, 𝑘 ∈ ℕ+. (2.38)

This equation compares the dynamics in the raw MD data (on the left-
hand side) with the model predictions, which were estimated for 𝜏lag and
then propagated 𝑘 − 1 times. From the Chapman-Kolmogorov equation

also follows the eigenvalue relationship 𝜆𝑖(𝑘𝜏lag) = [𝜆𝑖(𝜏lag)]
𝑘
, which

implies constant implied timescales 𝑡𝑖 for Markovian systems206

𝑡𝑖 = −
𝜏lag

ln𝜆𝑖(𝜏lag) = −
𝑘𝜏lag

ln𝜆𝑖(𝑘𝜏lag) . (2.39)

This relation can also be consulted to choose an appropriate lag-time for
a Markovian model.
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2.5 Protein Systems

Finally, two proteins will be briefly described that appear repeatedly in
this thesis, namely, villin headpiece and T4 lysozyme.

2.5.1 Villin Headpiece (HP35)

First is the villin headpiece subdomain HP35, which is a very widely used
model system in the realm of MD simulations, primarily due to its rapid
folding kinetics (i.e. good statistics) and structural simplicity.207,208 Com-
posed of 35 amino acids, it forms a compact structure with a hydropho-
bic core and three 𝛼-helices connected by two short loops, as shown in
Fig. 2.11a.

While the isolated subdomain HP35 is extensively studied in MD sim-
ulations79,95,124,208–211—in part due to its free availability through D.E.
Shaw Research212,213—it is part of the full villin headpiece HP67 in real-
ity, which itself represents an integral component of the globular Villin-1
protein found in the red junglefowl (Gallus gallus).

The ultrafast folding kinetics of HP35 (∼ 0.7 𝜇s) were achieved via double
mutation of the wild-type HP35,212 namely Lys24→Nle and Lys29→Nle,
which reduce electrostatic repulsion and stabilize the native fold.214 Com-
pared to the wild-type HP35, these twomodifications represent a six-fold
acceleration of the wild-type folding time of ∼ 4.3 𝜇s.

Here, we study a 300 𝜇s long trajectory by Piana et al.,213 who employed
the AMBER ff99SB∗-ILDN force field63,215 and simulated the crystal struc-
ture (PDB entry 2f4k) at a temperature 𝑇 = 360K close to the melting
temperature on the special-purpose Anton supercomputer216 using the
TIP3P water model.217

2.5.2 T4 Lysozyme

T4 Lysozyme (T4L), a 164-residue enzyme from bacteriophage T4, is
responsible for the degradation of Escherichia coli bacteria cell walls
by catalyzing the cleavage of glycosidic bonds, ultimately enabling vi-
ral replication and host cell lysis.98,99,218–220 T4L undergoes a hinge-like
open↔closed conformational transition, which resembles the motion of
a Pac-Man as indicated in Fig. 2.11b.

The conformational change is triggered through a long-range allosteric
mechanism originating in the hinge region (H), where the key residue
Phe4 (highlighted in red) acts as a locking mechanism. Then, this motion
propagates into the mouth region (M), rendering T4L a prime example
to study long-range allosteric couplings in proteins.98 The large-scale
motions in the mouth region and the subtle but essential motions in the
hydrophobic hinge region pose a challenge to standard dimensionality
reduction approaches.

Here we adopt the 50 𝜇s-long all-atom MD simulation carried out by
Ernst et al.,98 which was simulated using GROMACS 4.6.7221 at 𝑇 = 300K
in combination with the AMBER ff99SB∗-ILDN force field63,215 and the
TIP3P water model.217
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Figure 2.11 | (a) Structure of the villin headpiece subdomain HP35. The cartoon representation of the protein is shown in gray. The
carbon atoms are shown in light gray, oxygen in red, nitrogen in blue, sulfur in yellow and hydrogen in white.
(b) Molecular structure of T4L. The open-closed motion of the mouth region (M) is triggered through the key residue Phe4 (marked in
red) in the hinge region (H). The atom color is the same as for HP35 apart from the carbon atoms, which are represented by a darker
gray for better visualization.
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Parts of this chapter are based on our publication:

Correlation-Based Feature Selection to Identify Functional
Dynamics in Proteins
G. Diez, D. Nagel, and G. Stock, J. Chem. Theory Comput. 2022 18
(8), 5079–5088,
doi: 10.1021/acs.jctc.2c00337.

As described in Sec. 2.3.1, the Cartesian coordinates of the MD simula-
tion are generally not well suited for dimensionality reduction andmodel
building due to their mixing of biomolecular internal motions with irrele-
vant global motions of the protein within the simulation box. To address
this, internal coordinates such as dihedral angles and interatomic dis-
tances are preferred since they are not plagued by the above-mentioned
issues. Backbone dihedral angles (𝜙, 𝜓) are effective in capturing the
conformation of secondary structures such as 𝛼-helices or 𝛽-sheets but
only indirectly account for the tertiary structure.148,149 In contrast, inter-
residue distances provide a more direct description of the tertiary struc-
ture,95,222,223 which makes them a suitable choice for studying protein
dynamics. Therefore, we will concentrate on these in the following.

However, interresidue distances have the drawback of scaling quadrati-
cally with the size of the protein and (thus) carry a significant amount of
redundant information. This issue can be mitigated by focusing on con-
tact distances,95,152 which drastically reduces the number of coordinates
on the one hand and still allows understanding long-range effects as a
consequence of contact patterns on the other hand. Moreover, a major
strength of contact distances is that they directly explain conformational
changes through physicochemical processes such as contact formation
and breaking. Irrespective of how the input coordinates are chosen, we
anticipate that only a subset of these coordinates will play a role in the
specific biomolecular process of interest.

Therefore, we seek a grouping of all input coordinates—also referred to
as ”features”—according to their mutual relation in order to identify and
divide them into clusters of coordinates describing the same collective
motion.i

i An interesting and notable work in
this context is the AMINO algorithm
developed by Tiwary and coworkers,167

which uses a mutual information-based
distance metric to group related coordi-
nates into order parameters that can sub-
sequently be used for the construction of
reaction coordinates.

These cluster can serve as a direct way of interpreting the
biomolecular process in terms of contact distances158,224 or can be used
for further feature extraction and model building.2,208 Especially when
doing the latter, it becomes essential to exclude certain coordinates that
can mislead the analysis: specifically, high variance coordinates that lack
functional relevance in PCA and coordinates that change slowly over
time but are functionally irrelevant in TICA.ii

ii Examples include protein termini that
show large, but functionally irrelevant
fluctuations, and (𝜙, 𝜓) dihedral angles
that capture rare conformational transi-
tions (such as right- to left-handed he-
lix formation in HP35211,213) which oc-
cur slowly but are biologically insignif-
icant.156

Since both methods maxi-
mize for variance or timescales, respectively, including such coordinates

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00337
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would critically impact and bias the resulting model, effectively obstruct-
ing the extraction of meaningful information. To summarize, clustering
all features according to their mutual relation allows us the:

⋅ Identification of collective motions in the protein via groups of
highly correlated features.

⋅ Exclusion of certain coordinates that wouldmake furthermodeling
infeasible due to their bias on PCA/TICA.

⋅ Exclusion of uncorrelated (or independent) features that describe
random motion or features that remain roughly constant, such as
stable contacts

3.1 Similarity Measures

Before grouping all input features, a similarity measure quantifying their
mutual relation must be established. In this chapter, we will focus on the
one-dimensional case before extending to the multidimensional case in
Chapter 4.

In the following, wewill consider two one-dimensional randomvariables,
𝑋 ∼ 𝑝𝑋 and 𝑌 ∼ 𝑝𝑌 , where 𝑝𝑋 is the marginal probability distribution
over 𝒳 = {𝑥 ∣ 𝑝𝑋(𝑥) > 0}iii (analogous for 𝑌), and their correspondingiii In the following we will write 𝑝𝑋 in-

stead of 𝑝𝑋(𝑥) for the sake of brevity. realizations {𝑥𝑖} and {𝑦𝑖}. The joint probability distribution of 𝑋 and 𝑌
is described by 𝑝𝑥,𝑦.

3.1.1 Pearson Correlation Coefficient

The Pearson correlation coefficient 𝜌 measures the linear correlation be-
tween 𝑋 and 𝑌225, iviv While Auguste Bravais first derived

the mathematical formula for correla-
tion226 and Francis Galton later concep-
tualized the application to his heredity
studies,227 Karl Pearson formalized and
popularized the idea of correlation based
on Galtons ideas. Therefore, the Pear-
son correlation coefficient serves as an
example of Stigler’s Law, which states
that ”no scientific discovery is named af-
ter its original discoverer.”228 To prove
his point, Stigler humorously attributed
his Law to sociologist Robert K. Mer-
ton, who originally described the phe-
nomenon of cumulative advantage (not
only) in academia as Matthew effect.
”For to every one who has will more be
given, and he will have abundance; but
from him who has not, even what he has
will be taken away.”

-Matthew 25:29, RSV

𝜌(𝑋, 𝑌) = ⟨ (𝑋 − ⟨𝑋⟩) (𝑌 − ⟨𝑌⟩) ⟩
𝜎𝑋𝜎𝑌

, (3.1)

where ⟨… ⟩ denotes the expectation and 𝜎 the standard deviation. The
linear correlation 𝜌𝑋,𝑌 can take values from −1 to 1, specifically:

⋅ 𝜌(𝑋, 𝑌) = 1 if and only if 𝑌 = 𝑎𝑋 + 𝑏, where 𝑎 > 0
⋅ 𝜌(𝑋, 𝑌) = −1 if and only if 𝑌 = 𝑎𝑋 + 𝑏, where 𝑎 < 0

This implies 𝜌(𝑋, 𝑋) = 1 by definition. When describing the similar-
ity between two features, distinguishing between correlation and anti-
correlation (i.e., whether 𝑎 is larger or smaller than zero) is not meaning-
ful. To illustrate, consider the motion of a seesaw: as one end rises, the
distance from that end to the ground increases, while the distance on the
other side simultaneously decreases. Despite their anti-correlation, they
describe the same underlying process. Thus, it is the strength of their
relationship—rather than its sign—that matters. Therefore, the absolute
value ∣𝜌∣ is used as a similarity measure.

While statistical independence 𝑝𝑥,𝑦 = 𝑝𝑥𝑝𝑦 implies 𝜌(𝑋, 𝑌) = 0, the con-
verse is not true: zero linear correlation does not generally imply inde-
pendence. This is because the Pearson correlation coefficient only cap-
tures linear relationships through first and second moments, means and
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covariance. Strictly speaking, this is only adequate for Gaussian distri-
butions, while nonlinear dependencies are not necessarily detected (see
Fig. 3.1 for some examples). Physically speaking, this limitation is analo-
gous to a quadratic energy landscape with an associated linear force.53

−2 0 2
x

0

3

6

9

y

−1 0 1
x

−1

0

1

y

−2π 0 2π

x

−1

0

1

y

Figure 3.1 | Three sets of (𝑋, 𝑌)
data points with added noise and
𝜌(𝑋, 𝑌) ≈ 0 despite functional depen-
dencies: left: 𝑌 = 𝑋2, center: 𝑋 = cos𝜃
& 𝑌 = sin𝜃, right: 𝑌 = cos𝑋.

3.1.2 Mutual Information

Due to the above-mentioned restrictions of linear correlation, we con-
sider a more general measure of dependence between 𝑋 and 𝑌, namely
mutual information (MI).229 Unlike Pearson correlation, MI avoids any
assumptions about the underlying data and directly measures the statis-
tical independence of 𝑋 and 𝑌 by quantifying the dissimilarity of their
joint probability distribution 𝑝𝑥,𝑦 and the product of the marginals 𝑝𝑥𝑝𝑦
through the KL divergence

𝐼(𝑋, 𝑌) = 𝐷kl [𝑝𝑥,𝑦 ∥ 𝑝𝑥𝑝𝑦] (3.2)

= ∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑝𝑥,𝑦 ln
𝑝𝑥,𝑦
𝑝𝑥𝑝𝑦

,

which vanishes for independent variables 𝑝𝑥,𝑦 = 𝑝𝑥𝑝𝑦. Introducing the
Shannon entropy 𝐻(𝑋) and the joint entropy 𝐻(𝑋, 𝑌), which are given
by

𝐻(𝑋) = − ∑
𝑥∈𝒳

𝑝𝑥 ln 𝑝𝑥,

𝐻(𝑋, 𝑌) = − ∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑝𝑥,𝑦 ln 𝑝𝑥,𝑦,

the MI can be understood more intuitively:

𝐼(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌)
= 𝐻(𝑋) − 𝐻(𝑋 ∣ 𝑌). (3.3)

In the last step, the conditional entropy 𝐻(𝑋 ∣ 𝑌) = 𝐻(𝑋, 𝑌) − 𝐻(𝑌) was
introduced. Interpreting 𝐻(𝑋) as the uncertainty about 𝑋 and 𝐻(𝑋 ∣ 𝑌)
as the remaining uncertainty about 𝑋 after knowing 𝑌, the MI can be
understood as the reduction in uncertainty about 𝑋 due to the knowledge
of 𝑌.

From a theoretical point of view, MI is amore versatilemeasure ofmutual
relation since it captures both linear and nonlinear relationships while
making fewer assumptions about the underlying data. Despite these ad-
vantages, there are two practical limitations to MI, which we will discuss
in the following.
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Normalizing the one-Dimensional Mutual Information

First, theMI is not bound to [−1, 1] but ranges from [0, ∞), which compli-
cates analysis since it is not obvious which range of MI should be consid-
ered indicative of high or low similarity. For example, when we observe
an MI of 𝐼(𝑋, 𝑌) = 0.3, it is not immediately evident whether this rep-
resents a strong or weak relationship between the two variables 𝑋 and
𝑌. As described above, the MI measures the decrease in the uncertainty
of variable 𝑋 when taking into account variable 𝑌. Following Eq. (3.3),
it is clear, that the answer also depends on the uncertainty of 𝑋 and 𝑌,
that is 𝐻(𝑋) and 𝐻(𝑌).v Therefore, the normalization of MI by entropyv Consider the two scenarios with

identical MI, but completely different
relationships: In the first scenario, we
face a low-entropy variable 𝑋 with
𝐻(𝑋) = 0.5 and conditional entropy
of 𝐻(𝑋|𝑌) = 0.2, which results in a
MI of 𝐼(𝑋, 𝑌) = 0.3. The conditional
entropy 𝐻(𝑋|𝑌) is significantly lower
than the marginal entropy 𝐻(𝑋), which
indicates a strong relationship because
little uncertainty about 𝑋 remain after
observing 𝑌.
In the second scenario, we are dealing
with a high-entropy variable 𝐻(𝑋) = 5,
where observing 𝑌 hardly reduces the
uncertainty about 𝑋, indicated by
𝐻(𝑋|𝑌) = 4.7. Despite also yielding a
MI of 𝐼(𝑋, 𝑌) = 0.3, the relationship
is weak because most uncertainty still
remains.

measures is necessary to enable meaningful comparisons of mutual rela-
tions across different proteins.167,230,231 Fortunately, MI satisfies an upper
bound that directly incorporates these entropy values:232

𝐼(𝑋, 𝑌) ≤ √𝐻(𝑋)𝐻(𝑌) ≤ 𝐻(𝑋, 𝑌), (3.4)

where √𝐻(𝑋)𝐻(𝑌) denotes the geometric mean of the marginal en-
tropies and 𝐻(𝑋, 𝑌) the joint entropy. Based on this inequality, we define
two normalized MI measures

𝐼geom.(𝑋, 𝑌) = 𝐼(𝑋, 𝑌)
√𝐻(𝑋)𝐻(𝑌)

, (3.5)

𝐼joint(𝑋, 𝑌) = 𝐼(𝑋, 𝑌)
𝐻(𝑋, 𝑌) . (3.6)

Alternatively, we can revisit the definition of the MI in Eq. (3.2) and
substitute the unbound KL divergence with a bounded divergence mea-
sure between 𝑝𝑥,𝑦 and 𝑝𝑥𝑝𝑦. This leads us to the Jensen-Shannon diver-
gence:

𝐼js(𝑋, 𝑌) = 𝐷js [𝑝𝑥,𝑦 ∥ 𝑝𝑥𝑝𝑦]

= 1
2 𝐷kl [𝑝𝑥,𝑦 ∥ 𝑀] + 1

2 𝐷kl [𝑝𝑥𝑝𝑦 ∥ 𝑀] ,

where 𝑀 is the mixture distribution 𝑀 = 1
2 [𝑝𝑥,𝑦 + 𝑝𝑥𝑝𝑦]. Finally, we

mention the formulation of Gel’fand and Yaglom,233 who found that 𝜌
captures all relationships in the special case of Gaussian distributions
in one dimension or collinear Gaussian distributions of unit variance in
three dimensions. In these cases, the linear correlation coefficient com-
pletely characterizes the relationship between the variables since Gaus-
sian distributions are fully determined by their first two moments. Since
MI measures all statistical dependence and the linear correlation coeffi-
cient captures the complete dependencies for Gaussian distributions, we
can express the MI as a direct function of 𝜌 in this special case:

𝐼(𝑋, 𝑌) = − 𝑑
2 log [1 − 𝜌(𝑋, 𝑌)2] , (3.7)

where 𝑑 denotes the dimensionality. Based on this equation, we solve for
𝜌 and interpret it as a normalized quantity 𝐼gy of MI234

𝐼gy = √1 − exp(− 2𝐼(𝑋, 𝑌)
𝑑 ). (3.8)
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For completeness, we also mention an alternative normalization scheme
that achieves the normalization of the MI through the discretization of
the data on a grid.235 However, this might affect the statistical robust-
ness of the MI and can be significantly slower to compute compared to
measures based on local 𝑘-nn statistics (see Eq. 3.9 or section 4.3).236

Computation of one-Dimensional Mutual Information

The second limitation of MI is that its computation is much more in-
volved compared to linear correlation: rather than simply computing a
dot product, MI relies on the estimation of (at least) two-dimensional
probability densities. The estimation of higher dimensional probabil-
ity densities is notoriously difficult—especially in the three-dimensional
case, when the joint probability distribution 𝑝𝒙,𝒚 becomes six-dimensional,
which we will address in Chapter 4.

For the one-dimensional case, a simple histogram ansatz is the most
straightforwardmethod to estimate the probability densities (see Fig. 3.3a),
which, however, converges only slowly with the number of samples and
is not very robust since the number of bins heavily affects the resulting
estimate. This issue can be partly circumvented by using an optimal bin
width 𝑑bin as suggested by Freedman and Diaconis237 with an adjusted
prefactor of 2.59

𝑑bin = 2.59 IQR(𝑋)
3√𝑁

,

where 𝑁 denotes the number of samples and IQR is the interquartile
range of the data 𝑋. Freedman and Diaconis assumed Gaussian dis-
tributed data in their derivation, which is why this rule typically strug-
gles with distributions featuring fat tails. When working with contact
distances, we are often faced with distributions featuring one peak for
the bound state and a single-sided fat tail for the unbound state (see
Fig. 3.2 for an example).

Figure 3.2 | Estimation of the proba-
bility distribution of an exemplary dis-
tance 𝑑6,17 of HP35 via the histogram ap-
proach. In blue, we choose a naive ansatz
with 20 bins, while the red bars indi-
cate the number of bins estimated via the
Freedman-Diaconis rule.237 The height
of the bars were equally scaled for bet-
ter visualization.

As a simple remedy, the bin width might be rescaled by the following
factor

𝑑bin → 𝑑bin ⋅ 100th percentile − 0th percentile
85th percentile − 15th percentile

,

that effectively widens the bins to better capture the tail behavior.

Another option is a kernel density estimation (KDE),238 which estimates
the probability function density function by superposing smooth kernels
(see Fig. 3.3b) —typically Gaussian—centered at each data point 𝑥𝑖 (with
𝑖 = 1, … , 𝑁)

̂𝑝(𝑥) = 1
√2𝜋𝑁𝜎

𝑁
∑
𝑖=1

exp⎛⎜
⎝

− 1
2 ( 𝑥 − 𝑥𝑖

𝜎 )
2
⎞⎟
⎠

.

It converges faster than the histogram ansatz but comes with the price of
increased computational cost as well as the need to choose an appropri-
ate bandwidth parameter 𝜎 .239,240 In practice, relying on a single band-
width parameter 𝜎 renders KDE ill-suited for estimating MI since this
fixed smoothing parameter often results in over-smoothed probability
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density estimates when applied to distributions with strongly varying
densities, for example, multimodal distributions.

To overcome this, Kraskov and coworkers proposed an alternative es-
timator for MI based on local 𝑘-nearest neighbor (𝑘-nn) statistics (see
Fig. 3.3c):241, vivi Wewill revisit this estimator in more

detail in Sec. 4.3 since it plays a central
role for the multidimensional case.

𝐼(𝑋, 𝑌) = 𝜓(𝑁) + 𝜓(𝑘) − 1
𝑁

𝑁
∑
𝑖=1

[𝜓(𝑛𝑥,𝑖 + 1) + 𝜓(𝑛𝑦,𝑖 + 1)] , (3.9)

where 𝜓 is the digamma function satisfying the recursion 𝜓(𝑛 + 1) =
𝜓(𝑛) + 1/𝑛, with the Euler-Mascheroni constant as starting value 𝜓(1) =
−𝛾 ≈ 0.577. Here, 𝑁 denotes the number of data points and 𝑛𝑥,𝑖 (re-
spectively 𝑛𝑦,𝑖) is the number of data points 𝑗 for which ∥𝑥𝑖 − 𝑥𝑗∥ < 𝜖𝑘

𝑖
(respectively in 𝑦). For every data point 𝑖, the cutoff value 𝜖𝑘

𝑖 is selected
as the maximum of the 𝑘-nn distances in the x and y directions, i.e. 𝜖𝑘

𝑖 =
max(𝜖𝑘

𝑥,𝑖, 𝜖𝑘
𝑦,𝑖). This adaptive choice of 𝜖𝑘

𝑖 is a major advantage of this
estimator since it eliminates the need for a fixed bandwidth—as required
in KDE—hence preventing over-smoothing.

In order to compare the robustness of the histogram, KDE, and 𝑘-nn es-
timators, we tested these three approaches against two benchmark distri-
butions ofwhichwe can analytically calculate the true (non-normalized)viivii Here, we consider the non-

normalized case, since the normal-
ization of the 𝑘-nn estimator is not
straightforward and will be addressed
in Chapter. 4.

MI value 𝐼true. The first involved two uniformly independent random
variables in the interval [0, 1), featuring no mutual relation, and thus,
𝐼true(𝑋, 𝑌) = 0 (see Fig. 3.4). For the second distribution, we considered
samples drawn from a bivariate normal distribution with a correlation
of 𝜌(𝑋, 𝑌) = 0.8. This special case allows calculating the true MI value
as 𝐼true(𝑋, 𝑌) ≈ 0.5 following Eq. (3.7).

The results clearly indicate that the 𝑘-nn and KDE estimates converge
much faster toward the true MI value compared to the simple histogram,
which uses a binwidth determined by the Freedman-Diaconis rule. While
relying on larger sample sizes 𝑁 to achieve comparable accuracy, the
histogram approach still provides a reasonable approximation of the MI,
especially since we are (only) interested in relative differences among
different pairs of features.

Figure 3.3 | Illustration of the three different probability density function estimators. Data points (gray circles) were drawn according to
underlying true probability density function (red dashed line) and the probability density function was estimated based on these points
(blue line).
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Figure 3.4 | Computing the MI via a sim-
ple histogram-based, 𝑘-nn and KDE ap-
proach for an independent uniform dis-
tribution on the left and a bivariate nor-
mal distribution on the right. The mean
(thick solid line) and standard deviation
(shaded area) were estimated from 100
independent runs.
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Figure 3.5 | Runtime comparison for
the three MI estimators as well as linear
correlation for two normally distributed
variables. Mean and standard deviation
were estimated from 100 independent
runs. The computation was performed
on a single core of an Intel® Core™ i9-
14900K.

Calculating the full similaritymatrix involves quadratic complexity𝒪(𝑀2)
(or more precisely 1

2 𝑀(𝑀 − 1) steps) with respect to the number of fea-
tures 𝑀. Therefore, it is crucial to compare the runtimes for all three
methods (histogram, 𝑘-nn, and KDE) in order to assess whether they are
suitable to compute the MI for a protein characterized by hundreds or
even thousands of features. To this end, we computed the runtime of
each estimator to compute both MI and ∣𝜌∣ for two normally distributed
variables, as shown in Fig. 3.5 The KDE estimator is by far the most
computationally demanding one, requiring approximately a factor of
100 more CPU time than the histogram approach and 10 more times
than the 𝑘-nn estimator. Generally, calculating the MI is at least two
to three orders of magnitude slower than computing the Pearson cor-
relation. Balancing accuracy and computational efficiency, we proceed
with the histogram approach for further analysis, as it provides a reason-
able approximation for our purpose while maintaining favorable scaling
properties. This, however, is only practical in the one-dimensional case,
which we will discuss in detail in Chapter 4.

3.1.3 Evaluating the Trade-off: MI vs. 𝜌

Having established the histogram approach for the computation of one-
dimensional MI, it remains to evaluate whether the additional computa-
tional expenses justify its use over the simple linear correlation 𝜌. To
this end, we calculated the native contacts of T4L and HP35 (see Sec. 2.5)
as determined in the references 80, 98, resulting in 402 and 53 contacts,
respectively. The results for both systems are quite similar (compare SI,
Fig. A.2), which is why we combine these data to facilitate further dis-
cussion.

In order to assess whether theMI provides additional insights beyond the
absolute Pearson correlation coefficient, we analyze the joint probability
between the MI—normalized by its tightest bound 𝐼geom.—and the abso-
lute Pearson correlation coefficient ∣𝜌∣, denoted as 𝑝(𝐼geom., ∣𝜌∣), as shown
in Fig. 3.6(a). The joint probability reveals a clear relation between 𝐼geom.
and ∣𝜌∣, and comparable patterns are observed for other normalization
schemes of MI, as shown in SI, Fig. A.2. These findings suggest that
the nonlinear measures do not contain significant additional information
compared to the linear correlation in form of ∣𝜌∣.

Furthermore, it is noteworthy that the values of ∣𝜌∣ cover almost the full
range from 0 to 1, while values of 𝐼geom. hardly exceed values of 0.2. To
further illustrate this effect, Fig. 3.6(b) shows the cumulative probabil-
ity distribution for all similarity measures, demonstrating that over 90%
of the values of 𝐼geom. fall below 0.01. Similar patterns can be observed
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Figure 3.6 | Comparison of linear and
nonlinear similarity measures which
were computed for the native contacts
of T4L and HP35. (a) MI normalized ac-
cording to Eq. (3.5) compared to the ab-
solute Pearson coefficient ∣𝜌∣. (b) Cumu-
lative probability distribution of various
similarity measures. Adapted with mi-
nor changes from Ref. 1. Copyright ©
2022 The Authors.

for 𝐼joint, while the other nonlinear measures, 𝐼js and 𝐼gy predominantly
adopt higher values, rarely dropping below 𝐼js = 0.03 or 𝐼gy = 0.07. Re-
markably, even though all nonlinear measures are derived from the same
underlying MI, their normalized distributions show minimal overlap. In
contrast, the linear correlation ∣𝜌∣ uniformly accounts for small and high
correlations, spanning the full range. Combined with the fact that the
nonlinear measures fail to provide substantial additional insights and
their considerably greater computational demands, these results confirm
the straightforward and well-established linear Pearson coefficient as an
effective choice for measuring the similarity.

As a cautionary note, we emphasize that the Pearson correlation coeffi-
cient has serious flaws (compare e.g. Fig. 3.1),242 especiallywhen it comes
to high-dimensional data.3,234 However, for collinear data such as dis-
tances and even periodic variables,95 the Pearson correlation coefficient
reliably captures the overall correlation well—given that an appropriate
transformation to linear variables is applied.150,151

The close agreement observed between ∣𝜌∣ and MI is particularly remark-
able given that ∣𝜌∣ considers only the first twomoments of the underlying
distribution. While only Gaussian distributions are fully characterized
by these moments, the probability distributions we encountered in MD
data are often far from normal, typically exhibiting a pronounced peak
at small distances (corresponding to the bound state) and a one-sided fat
tail at large distances reflecting unbound conformations.

3.2 Communities of Collective Motion

Having established a robust similarity measure for quantifying the pair-
wise similarity between our input features, we now seek to reveal groups
of coordinatesviii involved in some specific process of cooperativemotion.viii In the following, we will refer to

these groups as ”clusters”. Representing the features as data points in a similarity space where the
features are arranged according to their similarity ∣𝜌∣ (or distance 1 − ∣𝜌∣),
this step translates into a straightforward clustering task and allows the
reorganization of the correlation matrix into a block-diagonal structure.
This is a critical step, and we demand that our clusters describing collec-
tive motion fulfill the following two criteria:243

1. Homogeneity: Each cluster should exclusively contain features
that correspond to a specific collective motion.
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2. Completeness: All coordinates that describe one specific collec-
tive motion must be assigned to the same cluster.

In the following, we want to identify an optimal clustering approach that
satisfies our criteria. However, clustering a correlation matrix involves
two particularities: First, the 𝑀 features—represented as 𝑀-dimensional
data points according to their distance 1 − ∣𝜌∣ to all other features— do
not naturally lie on a coordinate system, which is why we cannot define
a Euclidean distance between any two points in this space. This already
excludes 𝑘-means as a possible candidate for the clustering scheme since
it relies on geometric centroids computed from coordinate averages. Sec-
ondly, we are now facing a very sparse data space, where the number of
dimensions equals the number of data points, which renders employing
density-based clustering methods infeasible (at least without prior fea-
ture extraction). In order to avoid introducing unnecessary complexity,
we exclude density-based methods as well.

This narrows down the methods mentioned in Sec. 2.3.4 to 𝑘-medoids,
which still works even in non-metric spaces by designating actual data
points as cluster centers and complete linkage clustering, an agglomera-
tive hierarchical clustering method based on maximal pairwise distances.
While 𝑘-medoids and complete-linkage clustering address the challenges
arising from the non-Euclidean and high-dimensional sparse space, they
lack guarantees on cluster connectivity—a critical requirement for the
completeness of our clustering.ix ix Looking at SI, Fig. A.3, we see

that neither of these methods assign
the coordinates corresponding to the
open↔closed motion to one single clus-
ter.3.2.1 Leiden Community Detection

The Leiden community detection algorithm244 circumvents the above-
mentioned problems by operating on a graph rather than in a vector
space. We construct this graph by treating every feature as an individual
node, and the edges between the nodes reflect on their pairwise similar-
ity (i.e., correlation ∣𝜌∣). Based on such a graph, the Leiden algorithm then
identifies communities of highly correlated features through iterative op-
timization of an objective function, performing the following three steps
until convergence:x x This is only a high-level description of

the algorithm. For a detailed description,
please refer the supporting information
in Ref. 244.

1. Local moving of nodes: nodes are assigned to the communities
that yield the maximal gain of the objective function.

2. Refinement of the partition: Communities from step 1 may be
split into multiple sub-communities when this improves partition
quality. This step also ensures that all communities are internally
well-connected.

3. Aggregation of the network: The (sub-)communities of step 2
now become super-nodes, creating a coarse-grained network that
accelerates subsequent iterations.

The Leiden algorithm is closely related to the very popular Louvain al-
gorithm245 but addresses its critical flaw of internally disconnected clus-
ters by introducing the refinement phase. Additionally, the Leiden al-
gorithm incorporates some randomness during the refinement phase,
which avoids getting stuck in local minima and allows for a broader ex-
ploration of the partition space.
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Objective Functions

The most widely used objective function Φ is modularity, which quan-
tifies how far the structure of a network (or graph) deviates from a ran-
domly wired graph/network.246 That is, high modularity values indicate
the presence of well-defined communities featuring densely intercon-
nected nodes with sparse inter-community connections. Conversely,
low modularity values suggest a lack of pronounced community struc-
ture, implying that the network features only little organization or may
even be regarded as a randomly wired network. Formally, modularity is
defined as

Φmod = 1
2𝑚 ∑

𝑐
(𝑒𝑐 − 𝑘2

𝑐
2𝑚 ) ,

where the sum is taken over all clusters 𝑐, 𝑚 is the total number of edges
in the graph and 𝑒𝑐 denotes the sum of edge weights within cluster 𝑐.
Additionally, 𝑘𝑐 denotes the sum of the degrees of all nodes in 𝑐. The
first term 𝑒𝑐 favors the aggregation of nodes into large clusters, while
the second term, 𝑘2

𝑐 /2𝑚, imposes a constraint on the cluster size by pe-
nalizing excessively large clusters. The penalty term represents the ex-
pected number of edges within cluster 𝑐 if the entire network were ran-
domly rewired, but each node retained its degree (null model). There-
fore, the modularity is only high if an actual cluster is more densely con-
nected than its counterpart in a random network with the same node
strengths.

The assumption of randomly rewiring the entire network implies that
any node can theoretically be connected to any other node in the net-
work. However, in large networks, this is very unlikely since nodes typ-
ically interact only within their local neighborhoods, which—depending
on the size of the network—only constitute a vanishingly small fraction
of the entire network. Additionally, in large graphs, the expected num-
ber of edges between two small distinct clusters is of the order of𝒪(𝑀−1),
where 𝑀 is the number of nodes (or features in our case). Thus, even a
single accidental edge between two small and distinct clusters may be in-
terpreted as statistically significant by modularity, and the two clusters
would be merged. This issue implies a ”resolution limit”247 for modular-
ity and prevents the identification of small clusters in a graph.

As a remedy, Traag et al.248 proposed another objective function, referred
to as the ”constant Potts model” (CPM). Like modularity, the CPM can be
derived from the Potts model,249 which is itself a generalization of the
Ising model.250 Formally, the CPM objective function is defined as

ΦCPM = ∑
𝑐

[𝑒𝑐 − 𝛾(𝑛𝑐
2 )] , (3.10)

where 𝑛𝑐 denotes the number of nodes in cluster 𝑐 and the binomial
(𝑛𝑐

2 ) = (𝑛2
𝑐 − 𝑛𝑐)/2 denotes the number of possible edges within 𝑐. By

weighting the number of possible edges with the resolution parameter
𝛾, the CPM model compares the total observed correlation within each
cluster to an expected correlation in a null model cluster characterized
by a constant correlation of 𝛾 (see Fig. 3.7).

Figure 3.7 | Illustration of the CPM: The
total edge weights in an actual cluster
(top) are compared to a null model with
the same number of nodes in which ev-
ery edge is 𝛾-correlated.
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A cluster 𝑐 that contributes a higher total correlation than expected re-
sults in a positive contribution to the objective function, whereas clus-
ters with a smaller total observed correlation would penalize the parti-
tion. This way, 𝛾 ∈ [0, 1] might be interpreted as the minimal average
correlation necessary for cluster formation. However, unlike complete
linkage clustering, CPM also allows individual correlations to fall below
𝛾, provided that the cluster as a whole still increases ΦCPM. Ultimately,
𝛾 determines the clustering resolution: high 𝛾 values yield many small,
homogeneous clusters, while a lower 𝛾 results in fewer but also larger
and more heterogeneous clusters.

3.2.2 Optimal Clustering Strategy

Inspired by the patterns in the correlationmatrices we observed for HP35
and T4L (for descriptions of the systems, see Sec. 2.5), we developed a
benchmark artificial correlation matrix to systematically compare and
evaluate the performance of the different clustering methods, namely:

⋅ Leiden clustering using the CPM objective function
⋅ Leiden clustering using the modularity objective function
⋅ complete linkage clustering
⋅ 𝑘-medoids

This toy matrix is designed to capture essential characteristics of protein
systems, such as three large clusters corresponding to collective motion
alongsidemultiple mini-clusters containing only one feature to represent
uncorrelated, noisy coordinates. Furthermore, we included small resid-
ual correlations between the clusters to simulate amore realistic scenario.
The resulting matrix is shown in Fig. 3.8a and poses a challenging test
case for comparing the clustering approaches.

1 2 3 4 8 13
cluster

a reference

b CPM c modularity

d linkage e k-medoids

0.0 0.5 1.0
similarity

Figure 3.8 | Simple toymodel represent-
ing a similarity matrix. The matrix con-
sists of three clusters and 10 noise coor-
dinates. Clustering via 𝑘-medoids, com-
plete linkage and the Leiden algorithm
using modularity and CPM as objective
function were performed and compared
to the reference. Figure adapted with mi-
nor changes from Ref. 1. Copyright ©
(2022) The Authors.

Since we know the ”ground truth” of cluster assignment by construction
in this case, we can use it to calculate the V-measure.243 Comparing the
clustering results of each method to the known ”true” reference cluster
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assignments, the V-measure can be used to estimate the optimal param-
eters for each method, hence guaranteeing a fair and unbiased compar-
ison. We determined the optimal cluster parameters for each method
in SI, Fig. A.1, which were then used to obtain the clustering results in
Fig. 3.8b-e.

Generally speaking, all methods broadly capture the main clusters of col-
lective motion and noisy coordinates but differ in detail. In light of the
two criteria, homogeneity, and completeness defined in Sec. 3.2, we notice
that the latter is only satisfied by Leiden/CPM. The remaining methods
fail to completely resolve cluster 1, which features a strong correlation
to a single noise coordinate. Such sporadic correlations with noisy coor-
dinates can lead to spurious formation of new clusters—evident for clus-
ter 2 in complete linkage clustering and 𝑘-medoids—which is internally
highly correlated but has a disproportionately high cross-correlation to
cluster 1. The cause lies in the greedy decision-making of 𝑘-medoids and
complete linkage clustering, which rely on making locally optimal de-
cisions rather than optimizing a global quantity. Similarly, the Leiden
algorithm with modularity as an objective function is plagued by com-
parable problems since it is based on a 𝑘-nearest neighborhood graph,
which inevitably limits the decision-making to the local neighborhood.
Furthermore, as discussed above, the assumption of randomly rewiring
the entire graph introduces a resolution limit for small clusters, which
prevents the identification of the noise coordinates in the form of clus-
ters containing only one coordinate.

Conversely, the Leiden algorithm using the CPM objective functionxi al-xi hereafter referred to as ”Leiden clus-
tering”. lows (and enforces) locally suboptimal decisions through its stochastic

refinement, which facilitates finding the global maximum of the objec-
tive function. This approach ultimately yields the best results, satisfying
both completeness and homogeneity (as reflected by achieving a perfect
V-measure score; see SI, Fig. A.1). While the differences appear to be sub-
tle for the studied toy model, they become critical in real-world protein
systems as e.g. T4L, where other methods systematically fail to meet the
completeness criterion, even for the most dominant dynamical processes
(see SI, Fig. A.3).

Beyond its robustness, Leiden clustering is convenient to use as it only
relies on a single intuitive parameter 𝛾. Besides fine-tuning it by vi-
sual inspection of the resulting clustered correlation matrix, 𝛾 can be
optimized by cross-validation methods such as the Generalized Matrix
Rayleigh Quotient approach,251 which has been successfully applied for
constructing MSMs.

3.3 Software

All correlation measures and clustering methods introduced in this chap-
ter have been implemented in the Python package MoSAIC (”Molecu-
lar Systems Automated Identification of Cooperativity”).1 The package
adapts scikit-learn252 syntax and is freely available on the Moldyn web-
site253 or GitHub.254
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3.4 Applications

In the following, we demonstrate the versatility of MoSAIC through four
distinct applications spanning different systems and purposes.

3.4.1 T4 Lysozyme

As a first application, we study the cooperative open↔closed motion
of T4L (see Sec. 2.5) to demonstrate the capability of Leiden cluster-
ing to distinguish functional coordinates from noise. As previously dis-
cussed,98,99,101 the open↔closed transition of the two domains is alloster-
ically triggered by local motions in its hinge region (compare Fig. 2.11 b),
which renders the identification of reaction coordinates underlying this
process a challenge to standard dimensionality approaches.

Following Ernst et al.,98 we computed 402 native interresidue contacts.
As described in Sec. 2.3.1, a distance forms a contact when the 𝑑𝑖𝑗 between
the closest non-hydrogen atoms falls below 0.45nm. Native, in this case,
means that only two structures—and not the complete trajectory—were
used to compute these distances, namely the energy-minimized crystal
structure for the open state and the MD structure with the lowest radius
of gyration for the closed state.98

After computing the associated (time-resolved) contact distances 𝑑𝑖𝑗(𝑡),
we calculated the linear correlation matrix ∣𝜌∣ and employed Leiden clus-
tering with a resolution parameter of 𝛾 = 0.5. Clusters that contained
𝑛 = 5 or fewer coordinates were assigned as noise,xii which resulted in xii The choice of 𝑛 does not impact the

clustering, but eases the discussion of
the resulting matrix.

the block-diagonalized correlation matrix depicted in Fig. 3.9a.
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Figure 3.9 | Leiden clustering for T4L
using the linear correlation of native
contacts and the CPM with 𝛾 = 0.5.
(a) shows the block-diagonalized correla-
tion matrix and (b) the structure of T4L
in the open state, where the distances
of the corresponding clusters are shown:
cluster 1 in red, 2 in cyan and 3 in yellow.
Phe4 is shown in dark grey. Adapted
with minor changes from Ref. 1. Copy-
right © (2022) The Authors.

Remarkably, only three main clusters represent correlated motion, while
the great majority of coordinates (around 90%) are hardly correlated and
thus distributed over the remaining ∼ 300 clusters. While these three
main clusters feature an average internal correlation of ⟨∣𝜌∣⟩ = 0.69, the
mean residual correlation between them is only about 0.08, and the resid-
ual correlation between any two clusters, including noise, is only 0.04 on
average. These low values can be explained by the fact, that on the one
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hand, most intra-protein contacts in T4L are quite stable and only fluctu-
ate around their mean distance, while on the other hand, contacts on the
protein surface frequently form and break and hence fluctuate randomly.
Since neither of both are involved in functional dynamics, all these coor-
dinates represent noise that should be excluded from further analysis or
model building.

The first three clusters are visualized via their corresponding distances
plotted in the T4L structure (Fig. 3.9b). In particular, the 27 highly corre-
lated contact distances contained in cluster 1 describe the open↔closed
conformational change of T4L. These distances are shown in red and
span the space from the hinge region—located around the key residue
Phe4—to the mouth region, therefore reflecting the allosteric coupling
between these two distant regions.2

Showing very little or no correlation with cluster 1 at all, clusters 2 and
3 represent other correlated motions in T4L. Specifically, Cluster 2 cap-
tures a rocking motion driven by the rearrangement of the 𝛼1-helix and
the N-terminal domain. Cluster 3 describes a twist-like motion of the
two 𝛽-sheets and the nearby 𝛼2-helix; this latter motion was previously
reported by Hub & de Groot and later by Ernst et al..98,99

3.4.2 Villin Headpiece

As an example of folding, where we expect an entirely different picture
as for the bistable T4L, we consider HP35. Following Ref. 80, we inves-
tigate the 53 native contacts of the crystal structure (PDB 2f4k)214 and
compute their mutual relation via the absolute Pearson correlation coef-
ficient. Following upwith Leiden clustering using a resolution parameter
of 𝛾 = 0.65, we obtain the block-diagonalized correlation matrix shown
in Fig. 3.10a.

The matrix reveals seven highly correlated main clusters and cluster 8,
which is almost entirely uncorrelated to the rest of the system. Discard-
ing clusters with 𝑛 ≤ 2, 15 coordinates were assigned to noise.xiii Toxiii Other clustering methods produce

similar results, although the partition of
main and weakly correlated clusters dif-
fer, compare SI, Fig. A.4a.

facilitate discussion, the individual contact distances associated with the
main clusters are displayed in Fig. 3.10b,c. To begin with, cluster 8 re-
flects on the motions of the N-terminus relative to the 𝛼1-helix, which
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Figure 3.10 | Leiden clustering of HP35 with 𝛾 = 0.65 for 53 native contact distances of the crystal structure. (a) The block-diagonalized
matrix reveals sevenmain clusters, a completely uncorrelated cluster 8 and various noise coordinates. (b and c) Structure of (folded) HP35,
where the contact distances included in clusters 1-8 are shown. Adapted from Ref. 1 with minor changes. Copyright © (2022) The Authors.
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are almost entirely uncorrelated to the rest of the system. As mentioned
earlier, it is crucial to exclude such uncorrelated terminal motion from
the analysis since these dangling motions can exhibit large amplitude
fluctuations that may dominate the first principal components in a PCA,
although not relevant for the folding process. The same applies if the
uncorrelated motion displays a two-state behavior, such as transitions
between two different orientations of the terminus. If included, these
features would consequently double the number of conformational states
trivially, making the analysis unnecessarily cumbersome. As with T4L,
we, therefore, find that an essential first step in a successful analysis or
model building is the identification and rejection of uncorrelated motion
or weakly correlated noise coordinates.

Besides serving as a tool for dimensionality reduction, we can also em-
ploy Leiden clustering as an aid in interpreting the biomolecular pro-
cesses. For this purpose, we consider the clusters 1 to 7. By design, they
do not only show a high intra-cluster correlation of ⟨∣𝜌∣⟩ = 0.82 but also
exhibit high inter-cluster residual correlations of ⟨∣𝜌∣⟩ = 0.50 between the
main clusters only and 0.4 for all clusters. The high residual correlation
of ⟨∣𝜌∣⟩ = 0.50 between the main seven clusters indicates that all of them
describe different aspects of the same process—folding. This presents a
different pattern compared to T4L, where the main clusters are largely
uncorrelated and describe different processes.
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Figure 3.11 | Probability for each clus-
ter to form first or last during folding.
Adapted with minor changes from Ref. 1.
Copyright © (2022) The Authors.

Apart from the small clusters 5 and (in part) 6 that account for motions
within the 𝛼3-helix, all remaining main clusters contain tertiary contacts
connecting two secondary structures. For example, the 𝛼1- and 𝛼2-helix
are connected through cluster 1; cluster 3 reflects on the relative orienta-
tion between the 𝛼2 and 𝛼3 helices, while cluster 7 connects the helices
𝛼3 and 𝛼1, thus ultimately reporting on the compactness of HP35 during
the folding process.

Because of the strong intra-cluster correlations, these contactswill prefer-
ably form and break in a concerted manner, which allows us to assign a
state of ”1” to a cluster when (most of) its contacts are formed and a ”0”
otherwise. Representing the complete protein as a product state,xiv we

xiv For example the notation (1110000)
indicates formed contacts in the first
three clusters and unformed contacts in
cluster 4-7.

can characterize the structures of the folding trajectory using this coarse-
grained state description.152 Unlike a state definition via helicity where,
for example, (ffu) indicates that the first two helices are folded and helix
3 is unfolded,156 the product state description here focuses on tertiary
contacts and might, therefore, be better suited to describe cooperative
processes and the compactness of the whole protein.

As a straightforward application of this approach, we investigated the
temporal order of cluster formation during the 31 successful folding
events of HP35, as depicted in Fig. 3.11. Analysis of the MD trajectory
reveals that clusters 3 and 4—responsible for stabilizing the connection
of helices 𝛼2 and 𝛼3—typically fold first in the folding process. Notably,
clusters 1 and 7, which bridge helices 𝛼1 and 𝛼2, and 𝛼2 and 𝛼3, respec-
tively, consistently emerge as the final folding step and thus likely define
the transition state of the folding process. This small example illustrates
how the organization of contact distances in key clusters can provide
valuable first insights into the mechanisms of the considered biomolecu-
lar process.
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HP35 Applications in Independent Work

A notable example of Leiden clustering is the work of D. Nagel et al. who
used it to analyze their resulting (macro-)state trajectory of an MSM of
HP35.208 They systematically employed Leiden clustering to characterize
the structural organization of each state.

In Fig. 3.12, we consider four representative macrostates from the trajec-
tory made available by D. Nagel and coworkersxv and follow the visual-xv this reference trajectory is freely

accessible at https://github.com/
moldyn/HP35.

ization approach they introduced in Ref. 208. The macrostates are sorted
by decreasing fraction of native contacts, such that macrostate S1 is the
most compact (folded) state, S5 and S8 can be considered intermediate
states along the folding pathway, while S12 is fully unfolded.

For each macrostate, the distribution of contact distances 𝑑𝑖𝑗 within the
Leiden clusters from Fig. 3.10 provides a concise structural fingerprint.
This facilitates a straightforward interpretation of the biomolecular pro-
cess, for example modeled by an MSM208 in terms of the selected input
coordinates.

In these plots, the interquartile range (iqr)—the range between the 25th
and 75th percentiles—captures the central data spread for each contact
distance. The whiskers extend from the lower bound 𝑄1 − 1.5⋅iqr to the
upper bound 𝑄3+1.5⋅iqr,xvi indicating the typical range of the contact dis-xvi 𝑄1 is the first quartile, 𝑄3 the third.

tances excluding outliers. Furthermore, the median and the correspond-
ing distances 𝑑𝑖𝑗 of the crystal structure are shown for reference. Return-
ing to the above idea of product space description, we can readily assign
(1111111) to S1, (1111000) to S5, (0111100) to S8 and S12 as (0000000),
reflecting whether the contact distances in each Leiden cluster are (on
average) formed within that specific state.

Figure 3.12 | Structural analysis of four
representative macrostates (S1, S5, S8
and S12) of the state trajectory provided
in Ref. 208. The macrostates are char-
acterized by the distribution of contact
distances within the Leiden clusters de-
fined in Fig. 3.10. The percentage for
each state indicates its relative popula-
tion in the trajectory.
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3.4.3 C10-Trimer

As a last application example for identifying collective motion, we con-
sider the C10-trimer (1-decene trimer, C30H62), which is a synthetic
hydrocarbon widely studied for its extreme-condition lubricant proper-
ties.255–257 Formed by linking 1-decene molecules into a branched alkane
structure, the C10-trimer is a key component of the PAO4 base oil—a low-
viscosity polyalphaolefin widely used in gear, compressor and engine
oils, hydraulic fluids, greases, and more258 due to its performance even
under extreme pressures of the order of GPa.259

Studying the atomic motion of the C10-trimer may allow the identifica-
tion of structure-property relationships that link macroscopic quantities,
such as viscosity, to atomistic variables. To this end, we used a 1 𝜇s long
trajectory simulated by Matthias Post,260 who simulated a bulk of 260

https://github.com/moldyn/HP35
https://github.com/moldyn/HP35
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Figure 3.13 | Bulk of 260 C10-trimers.
For better visualization, one trimer is
marked in red.

trimers within a cuboid of size 5 × 5.5 × 8nm3 with periodic boundary
conditions using GROMACS at a temperature of 𝑇 = 500K.261, xvii xvii For further details on the simulation

consult Ref. 261, Sec. 5.5.
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Figure 3.14 | Block-diagonalized corre-
lation matrix of all distances between
C-atoms within the C10-trimer. Lei-
den/CPM clustering with a resolution
parameter of 𝛾 = 0.5 was applied.

As a first step, we calculated all distances between C-atoms within one
trimer and performed Leiden clustering with CPM and a resolution pa-
rameter of 𝛾 = 0.5. The resulting block-diagonalized correlation ma-
trix is shown in Fig. 3.14 and reveals distinct clusters governing its con-
formational dynamics (Fig. 3.15). The first three clusters correspond
to large-scale relative movements between the three branched chains,
while clusters 4-8 describe local intra-chain flexibility such as bending
and stretching. The uniformly distributed uncorrelated thermal vibra-
tions (i.e., noise coordinates) along the chains show no spatial coherence.
This means that motions localized within single chains (apart from clus-
ters 4-8 bending/stretching, in which the complete chain is included), do
not collectively influence the trimer’s global dynamics.

In Ref. 255, Falk et al. integrated microscopic free-volume dynamics into
the Stokes-Einstein framework to predict viscosity under extreme pres-
sure. Their approach describes diffusion motion as a consequence of
cage-and-jumps events, where a molecule (described through its center
of mass (COM) coordinate) is temporally spatially confined by neighbor-
ing molecules and jumps as soon as sufficient volume becomes available
in its neighborhood.

Figure 3.15 | Structural representation
of the distances contained in the corre-
sponding Leiden clusters in Fig. 3.14.

To this end, we computed two displacement quantities to see whether
internal rearrangements of the trimer are correlated with its jumps in
the bulk: the mean squared displacement (MSD) of the COM and the
simple Euclidean distance between its initial and current position (see
SI, Fig. A.5). The linear correlation between the first principal compo-
nent of each Leiden clusterxviii and these quantities is shown in Tab. 3.1. xviii The first principal component for

each Leiden cluster has an explained
variance ratio roughly around 0.8 thus
representing a good one-dimensional ap-
proximation.

The throughout low correlation between COM displacement and inter-
nal motion suggests that the free-volume availability alone dictates the
diffusion. We hypothesize that under high pressure, the trimer cannot
undergo coordinated internal rearrangements before translating into a
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neighboring free volume. Instead, these jumps are stochastically trig-
gered by external forces resulting from the pressurized environment,
which forces the trimer to move into the free volume without prior align-
ment.

This is in line with the findings of Falk et al.,255 who predict the viscosity
solely by relying on COM-derived parameters implicitly assuming that
internal dynamics are thermally equilibrated and independent of the dif-
fusion process.

Table 3.1 | Correlation between the first
principal component of each Leiden clus-
ter and the mean squared displacement
(MSD) and Euclidean distance of the cen-
ter of mass (COM) of the C10-trimer. The
correlation was computed over a 1 𝜇s
long trajectory.

cluster 1 2 3 4 5 6 7 8
∣𝜌(𝑥1,MSD)∣ 0.06 0.13 0.11 0.05 0.00 0.01 0.04 0.05
∣𝜌(𝑥1,Euc. dist.)∣ 0.01 0.03 0.07 0.00 0.00 0.00 0.09 0.06

3.4.4 From Features to Trajectories: Path Separation

In the last sections, we saw that the Leiden clustering greatly facilitates
the analysis of biomolecular processes by identifying key collective mo-
tions and noise coordinates. However, due to its general framework, Mo-
SAIC can not only be used for feature selection but naturally extends to
the identification of different pathways by clustering trajectories.

Targeted MD and the Need for Path Separation

This plays a crucial role in the analysis of biomolecular processes, where
a protein-ligand system is studied as, e.g., ligand (un)binding. Here, bind-
ing and unbinding events can occur via different pathways in and out of
the binding site.262 In our group, ligand unbinding is typically studied us-
ing dissipation-corrected targeted Molecular dynamics,263 which allows
the estimation of free energies and, thus, friction factors Γ . Ligand un-
binding is enforced via targeted MD,65 which applies a constant velocity
𝑣 constraint along a predefined reaction coordinate 𝑥

Φ(𝑡) = 𝑥(𝑡) − (𝑥0 + 𝑣𝑡) != 0.

This constraint is realized by the force 𝑓 = 𝜆 dΦ
d𝑥 , where 𝜆 represents the

Lagrange multiplier. The nonequilibrium work performed during such a
pulling process is given by:

𝑊(𝑥) = ∫
𝑥

𝑥0
d𝑥′𝑓 (𝑥′)

Based on this work distribution, the free energy profile Δ𝐺(𝑥) can be
estimated using a cumulant expansion of the Jarzynski equality264

Δ𝐺(𝑥) = ⟨𝑊(𝑥)⟩𝑁 − 1
2𝑘b𝑇 ⟨𝛿𝑊(𝑥)2⟩𝑁⏟⏟⏟⏟⏟⏟⏟⏟⏟

dissipative work

+𝒪(𝛿𝑊3). (3.11)

Here, ⟨⋯⟩𝑁 denotes the ensemble average over 𝑁 independent trajecto-
ries initialized from a common equilibrium Boltzmann distribution. The
truncation after the second order assumes that the work distribution
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is Gaussian—which is only reasonable when trajectories follow similar
pathways. Assuming that the approximation holds, the friction can be
calculated as

Γ(𝑥) = 1
𝑣

d
d𝑥 𝑊𝑑𝑖𝑠𝑠(𝑥).

Application: A2A

As a single example, we consider ligand unbinding in the A2A adeno-
sine receptor.265, xix To capture the dynamics of the unbinding process, xix For more details on the system

and the simulation setup, we refer to
Ref. 265.

contact distances between the ligand and the protein were computed,
resulting in 104 input features.
In the next step, we performed a two-step PCA to first establish a com-
mon, global coordinate system for all 681 trajectories and then extract
each trajectory’s own directions of (orthogonal)maximumvariancewithin
this global coordinate system. To this end, we combined the mean-
free contact distances of all 681 trajectories into a single data matrix
𝑿 ∈ ℝ𝑁×104, xx. Performing a PCA on this data matrix, we retained xx 𝑁 is the number of all frames in the

681 trajectories.the top 𝑑 = 3 eigenvectors 𝑾 = {𝒘1, 𝒘2, 𝒘3} (see Sec. 2.3.3) of the co-
variance matrix 𝜮 = 1

𝑁 𝑿⊺𝑿 . In a subsequent step, we extracted the
directions of maximum variance for each trajectory 𝑿𝑖 individually by
first projecting it onto the global subspace

𝒁𝑖 = 𝑿𝑖 ⋅ 𝑾

and computed the trajectory-specific covariance matrix in this reduced
3-dimensional space,

𝜮𝒊 = 1
(𝑁𝑖 − 1) 𝒁⊺

𝑖 𝒁𝑖

and then finally diagonalizing it

𝜮𝒊 = 𝑾𝑖 ⋅ 𝜦𝑖 ⋅ 𝑾⊺
𝑖 .

The columns of 𝑾𝑖 = {𝒘(1)
𝑖 , 𝒘(2)

𝑖 , 𝒘(3)
𝑖 } are three-dimensional vectors

containing the orthogonal directions of maximum variance for each tra-
jectory in the same global PCA subspace. This shared reference frame
allows us to compute the similarity between two trajectories by comput-
ing the overlap of their eigenvectors

𝑆𝑖𝑗 = ∣𝒘̂(2)
𝑖 ⋅ 𝒘̂(2)

𝑗 ∣ ⋅ ∣𝒘̂(3)
𝑖 ⋅ 𝒘̂(3)

𝑗 ∣ ,

where 𝒘̂ indicates the normalized eigenvectors. In our particular case,
we have refrained from including the scalar product between the first
eigenvectors since they are predominantly defined by the pulling direc-
tion rather than the motion orthogonal to it.
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Figure 3.16 | Path separation based on
Leiden clustering. First, we computed a
PCA-based similarity measure between
every pair of trajectories and then ap-
plied Leiden clustering with a resolution
parameter of 𝛾 = 0.9 to obtain the path
separation matrix.

The resulting similarity matrix for A2A is clustered with Leiden/CPM
with a resolution parameter of 𝛾 = 0.9 and shown in Fig. 3.16. We focus
on clusters 5 and 6 due to their pronounced dissimilarity and show the
volume occupied by the ligand across all trajectories within these clus-
ters in Fig. 3.17. The structural representation of the accessed volume
shows that the ligand in these clusters exits the binding pocket through
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Figure 3.17 | Volume accessed by the
ligand during the unbinding process in
cluster 5 (red) and 6 (blue) of the path
separation matrix shown in Fig. 3.16.

opposite directions, indicating that the supposed approach is suitable to
discriminate between different unbinding pathways.

The procedure described above is only meant as proof of concept. While
we have arbitrarily limited our analysis to a three-dimensional PCA sub-
space, we note that the choice could be made more systematically, for
example, by selecting enough components to capture a certain amount
of cumulative variance (e.g., 90%). Building on this approach, in a sub-
sequent study, Tänzel and coworkers systematically investigated differ-
ent input coordinates and similarity measures to identify pathways in
pulling simulations in Ref. 265.

3.5 Concluding Remarks

We have introduced a correlation-based analysis framework for molec-
ular dynamics simulation data that identifies collective motions under-
lying functional dynamics while systematically excluding uncorrelated
or weakly correlated noise coordinates. Primarily designed for feature
selection, this approach is particularly valuable for dimensionality reduc-
tion prior to applying feature extraction methods like principal compo-
nent analysis, time-lagged independent component analysis, or neural-
network based autoencoder architectures. High-variance or slow but
nonfunctional dynamics can erroneously dominate subsequent analysis
and model building and must therefore be discarded before. Our method
works completely unsupervised, and, therefore, avoids possible bias due
to presumed functional observables,99,266 conformational states,101 or
variational principles that maximize timescales.102

By systematically comparing different similarity measures, we demon-
strated that the linear Pearson correlation coefficient provides a robust
and computationally efficient measure for collinear biomolecular dynam-
ics data. Even though more sophisticated nonlinear measures such as
normalized mutual information are theoretically able to capture more
complex relationships, our analysis revealed that they do not offer addi-
tional practical insights despite their significantly higher computational
cost.
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In order to identify collective motions through block-diagonalization of
a similarity matrix, we have found that the Leiden algorithm with the
constant Potts model objective function consistently outperforms other
clustering approaches in both synthetic and real-world examples. Based
on the synthetic toy matrix, we demonstrated that the Leiden algorithm
was the only method that satisfied both homogeneity and completeness.
This is crucial for the faithful assignment of features to their correspond-
ing collective motions, especially in the case of being confronted with
challenging residual correlations. This is clearly shown in the SI, Fig. A.3,
where all other methods fail to assign all coordinates corresponding to
the open↔closed transition of T4L to one single cluster.

We demonstrated the effectiveness and versatility of our approach through
diverse applications spanning conformational dynamics of T4L, protein
folding in HP35, synthetic polymer dynamics (C10-trimer), and ligand
unbinding pathways in A2A. Originally developed for feature selection,
the method’s ability to be easily extended to trajectory clustering for
path separation highlights its adaptability.

All analysis steps are implemented in the open-source Python package
MoSAIC, which adapts the Scikit-learn252 syntax and provides a user-
friendly interface for the analysis of functional biomolecular processes,
facilitating both mechanistic interpretation (as e.g. in refs. 2, 224, 267)
and the construction of accurate low-dimensional dynamical models (for
example in refs. 95 and 208).
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Parts of this chapter are based on our publication:

Accurate Estimation of the Normalized Mutual Information
of Multidimensional Data
D. Nagel, G. Diez and G. Stock, J. Chem. Phys. 2024 161 (5), 054108,
doi: https://doi.org/10.1063/5.0217960 .

In the preceding chapter, we established the linear Pearson coefficient
as a well-suited measure to quantify the interrelation between two one-
dimensional stochastic random variables, 𝑋 and 𝑌. We now explore sim-
ilarity measures for multidimensional data. This chapter focuses on the-
oretical aspects of multidimensional similarity measures, whereas their
practical application is explored in the second part of chapter 5 through
a case study of the protein T4 lysozyme.

In a range of disciplines, the quantification of correlations between dif-
ferent high-dimensional variables is of great interest. Examples include
geostatistics, where the interrelationships of geographic variables across
different spatial regions are studied.268–270 In neuroscience, correlations
between different brain regions are examined to understand functional
pathways underlying cognitive processes.271 In computer vision, multi-
dimensional similarity measures facilitate image alignment, which is es-
sential for tasks like medical image analysis.272,273 Similarly, in finance,
correlation analysis uncovers connections between different financial as-
sets, market structures, and potential contagion effects during varying
market conditions.274,275

In the field of chemical and biological physics, correlation measures are
employed to investigate dynamic interdependencies among atoms or
various parts of a molecular system. For example, correlation analysis
serves as the foundation of PCA, which is used to reduce the dimen-
sionality of the system,105,172,276 while community detection approaches
leverage correlations to identify interacting regions within biomolecular
systems.1,167,277 Furthermore, correlation patterns are used for the con-
struction of allosteric networks that aim to model signal transduction
pathways in proteins.278–283

Traditional linear correlation measures like the Pearson correlation co-
efficient impose restrictive Gaussian assumptions about the underlying
data distribution, limiting their ability to identify relationships beyond
linear ones. In this chapter, we therefore explore the limitations of linear
correlation measures—that manifest in both one-dimensional and multi-
dimensional spaces. Mutual information (MI) provides a versatile frame-
work to quantify the similarity between variables by measuring statis-
tical dependence without relying on specific distributional assumptions.

https://doi.org/10.1063/5.0217960
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A significant drawback of MI, however, lies in the fact that it lacks nor-
malization, making the interpretation of its values difficult and posing
problems when comparing different systems. To address this limitation,
we propose a novel and scalable normalization scheme for MI that works
in any dimension—a challenge substantially more complex than in its
one-dimensional counterpart.3

4.1 Limits of Multidimensional Linear
Correlation

Arguably, the most straightforward measure of the correlation between
two Cartesian coordinates is the linear Pearson coefficient extended to
the multidimensional case via234,278,284

𝜌(𝑿, 𝒀) = ⟨𝑿 ⋅ 𝒀⟩
√⟨𝑿2⟩⟨𝒀2⟩

, (4.1)

where 𝑿 = 𝒓 − ⟨𝒓⟩ denotes a displacement vector that measures the de-
viation of the atom position 𝒓𝑡 = (𝑥𝑡, 𝑦𝑡, 𝑧𝑡) ∈ ℝ3 from its time-averaged
position.i This formulation decomposes into directional componentsi 𝑡 denotes the time index of the trajec-

tory. Analogous for 𝒀 . through the dot product:

⟨𝑿𝑖 ⋅ 𝒀𝑗⟩ = ∑
𝛼=𝑥,𝑦,𝑧

⟨Δ𝛼𝑖Δ𝛼𝑗⟩

where Δ𝛼𝑖 = 𝛼𝑖(𝑡) − ⟨𝛼𝑖⟩ represents coordinate fluctuations of atoms 𝑖
and 𝑗 (typically C𝛼-atoms).

For the sake of simplicity, we will slightly abuse notation and express the
absolute three-dimensional Pearson correlation coefficient as

∣𝜌𝑖𝑗∣ = 1
3

∣∣∣∣
∑

𝛼=𝑥,𝑦,𝑧
𝜌𝛼𝛼

𝑖𝑗
∣∣∣∣
,

This means that due to the scalar product in Eq.(4.1), no 𝜌𝛼𝛽
𝑖𝑗 -terms are

considered, which is very problematic in the multidimensional case. To
illustrate this, we consider a simple example of two particles that are
entirely dependent on each other (see Fig. 4.1a), i.e., we can describe the
motion of one particle as a function of the other particle:

𝒓(1)
𝑡 =

⎛⎜⎜⎜⎜
⎝

cos(𝑡)
sin(𝑡)
sin(2𝑡)

⎞⎟⎟⎟⎟
⎠

and 𝒓(2)
𝑡 =

⎛⎜⎜⎜⎜
⎝

cos(𝑡)
− sin(𝑡)
sin(2𝑡)

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

1 0 0
0 −1 0
0 0 1

⎞⎟⎟⎟⎟
⎠

𝒓(1)
𝑡

This is even though a completet dependence between the two particles
in all three dimensions exists (see Fig. 4.1b), the absolute Pearson corre-
lation coefficient is only ∣𝜌𝑖𝑗∣ = 1/3 ⋅ (1 − 1 + 1) = 1/3. This is a severe
limitation since the Pearson correlation coefficient fails to capture the
perfect functional dependence between both particles due to sign cancel-
lation. We want to emphasize that this is not related to any kind of non-
linearity but rather a consequence of the differentiation between corre-
lation and anti-correlation, which has to be dropped for any meaningful
measure of multidimensional correlation.234 Even though this limitation
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Figure 4.1 | A simple example of a three-dimensional system with two particles which are perfectly linearly (anti-)correlated in each
direction, 𝑥, 𝑦 and 𝑧. (a) The three-dimensional trajectory of the two particles and (b) the corresponding time series of the three coordi-
nates.

was already pointed out by Lange and Grubmüller,234 the Pearson cor-
relation coefficient is still widely used for the construction of allosteric
networks.278–281

As a simple remedy, we may sum the absolute values of the three indi-
vidual components, that is, ∣𝜌𝑖𝑗∣ = 1

3 ∑𝛼=𝑥,𝑦,𝑧 ∣𝜌𝛼𝛼
𝑖𝑗 ∣, which fixes the prob-

lems of sign correlation and would indeed lead to a perfect correlation
of ∣𝜌𝑖𝑗∣ = 1 for the example above. However, this approach is still lim-
ited since it does not take into account cross-correlations between the
different directions and still depends on the specific coordinate system
chosen.

4.1.1 Canonical Correlation Analysis

To account for this, canonical correlation analysis (CCA)285—a standard
tool for the computation of linear correlations betweenmultidimensional
data—can be employed. It was already previously successfully applied to
compute linear correlation between Cartesian coordinates.286

The core idea of CCA is that rather than directly computing correlations
between individual directions, the original variables are transformed into
new canonical variables that capture the strongest possible linear rela-
tionships between the two sets of variables. For Cartesian coordinates
𝑿, 𝒀 ∈ ℝ3, CCA finds linear transformations 𝑨, 𝑩 ∈ ℝ3×3, that project
the input coordinates into canonical spaces 𝑿̂ = 𝑨𝑿 and ̂𝒀 = 𝑩𝒀 . These
transformations are chosen such that they maximize the Pearson corre-
lation coefficient between the two sets of canonical variables

𝜌C(𝑿, 𝒀) ≡ 𝜌(𝑿̂, ̂𝒀) != max, (4.2)

and can be obtained by solving a generalized eigenvalue problem derived
from the covariance matrices of 𝑿 and 𝒀 . Eventually, the squared canon-
ical correlation coefficient can be calculated as the average eigenvalue,
i.e. 𝜌2

C = 1
3 ∑𝑖 𝜆𝑖.ii For the example above in Fig. 4.1, we find a perfect ii A recipe how to compute the canon-

ical correlation coefficient is given in
the Supporting Information; see SI, chap-
ter B.1.

correlation of 𝜌C = 1 since the canonical variables overlap entirely (see
SI, Fig. B.1).
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4.1.2 General Limitations of Linear Correlation

We have seen that the linear Pearson correlation coefficient is not suit-
able for capturing the correlation between two multidimensional vari-
ables. Nevertheless, it is still widely used for the construction of allosteric
networks.278–281 While the most critical issue—sign cancellation—can
easily be fixed by summing absolute values of the directional contribu-
tions, this approach still fails to capture correlations between different
directions. CCA offers a partial solution by transforming the original
variables to canonical coordinates in order to optimize correlation, yet
both approaches share a fundamental limitation: they are inherently
restricted to linear relationships.

This linear assumption can be problematic since it implies that the under-
lying data distribution is Gaussian. However, this is rarely the case for
most MD data (see Fig. 3.2), which makes the close relationship between
linear correlation and MI in Fig. 3.6 even more surprising. From a more
theoretical perspective, however, nonlinear relationships in physics are
ubiquitous rather than exceptional. Consider the simple case of two par-

Figure 4.2 | Comparison of 𝜌, 𝜌C and
normalized MI 𝐼N for two oscillating par-
ticles with a phase shift of 𝜋/2. While
both 𝜌 and 𝜌C fail to detect any rela-
tionship, our estimator 𝐼N—presented in
Sec. 4.4—is able to capture the perfect re-
lationship.

ticles oscillating with identical frequency in parallel direction. As long
as they are in phase, they are perfectly correlated and exhibit a linear
correlation of 𝜌 = 1, but if we introduce a phase shift of 𝜋/2, the lin-
ear correlation vanishes entirely despite the fact that the two particles
are still perfectly functionally dependent. The reason for this is that the
configurational space is now a circle, which cannot be captured by the
Gaussian approximation, regardless of a coordinate transformation.234

MI provides a natural solution to these problems as it makes no assump-
tions about the underlying form of relationships between the variables.
As demonstrated in Fig. 4.2, our estimator for the normalized MI 𝐼N—
which we will introduce in Sec. 4.4—is able to perfectly capture the re-
lationship between the two oscillating particles despite their phase shift
of 𝜋/2; 𝐼N = 1. That being said, we want to emphasize that MI does
not suffer from directional cancellation, which is why this also works
in the multidimensional case. These properties make MI a versatile and
powerful measure for dependencies between variables, especially in the
context of complex MD dynamics, where the joint probability distribu-
tion of any two variables can be highly nonlinear and non-Gaussian. In
the following sections, we will present computational and theoretical dif-
ficulties that arise when estimating MI in the multidimensional case and
finally propose the novel estimator 𝐼N, which was also used in the exam-
ple above.

4.2 Mutual Information Revisited

As already pointed out in the last chapter, the MI 𝐼(𝑋, 𝑌) is a more ver-
satile measure of correlation since it makes no assumption about the un-
derlying distribution of the data. We refer to the section 3.1.2 for details
to MI and only recall the definition here:

𝐼(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌), (4.3)
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where we remember that

𝐻(𝑋) = − ∑
𝑥∈𝒳

𝑝𝑥 ln 𝑝𝑥 (4.4)

denotes the marginal entropy and

𝐻(𝑋, 𝑌) = − ∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑝𝑥𝑦 ln 𝑝𝑥𝑦 (4.5)

represents the joint entropy. As the requirement of normalization was
also already discussed in section 3.1.2, we refrain from repeating details
and focus solely on problems that arise in the multidimensional case.

4.2.1 Normalizing Multidimensional Mutual
Information

To establish an appropriate normalization factor, we recall the normaliza-
tion factors already discussed for the one-dimensional case in Eq. (3.4):

𝐼(𝑋, 𝑌) ≤ min
𝑍=𝑋,𝑌

𝐻(𝑍) ≤ √𝐻(𝑋)𝐻(𝑌)

≤ max
𝑍=𝑋,𝑌

𝐻(𝑍) ≤ 𝐻(𝑋, 𝑌) (4.6)

We choose the geometric mean √𝐻(𝑋)𝐻(𝑌) as our normalization due
to its analogy to a normalized inner product and, thus, to the Pearson
correlation coefficient. This leads to the upper bound of the Normalized
Mutual Information (NMI):

𝐼N(𝑋, 𝑌) = 𝐼(𝑋, 𝑌)
√𝐻(𝑋)𝐻(𝑌)

≤ 1. (4.7)

So far, nothing new compared to the one-dimensional case, and we could
readily apply this normalization scheme to multidimensional MI com-
puted via a histogram approach (compare section 3.1.2). However, in
the three-dimensional Cartesian case, the joint probability distribution
𝑃(𝑋, 𝑌) is six-dimensional, which renders such a histogram approach
prohibitive. Instead, the NMI in the multidimensional case is typically
computed using the algorithm developed by Kraskov, Stögbauer, and
Grassberger, also known as KSG-estimator,241 which computes the MI
via Eq. (4.3) and estimates the entropies using 𝑘-nn statistics.287–290

Differential and Relative Entropy

Unfortunately, the above-mentioned inequalities used for the normaliza-
tion of MI only hold for discrete entropies but do not extend to con-
tinuous entropies.291 This creates a practical challenge since the KSG-
estimator relies on continuous 𝑘-nn statistics, which might violate the
inequalities in Eq. (4.6). Therefore, to properly apply these inequalities,
we need to transform the discrete probability distributions (like 𝑝𝑥) into
their continuous counterparts [like 𝑃(𝑥)] when computing the entropies
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in Eq. (4.4) and Eq. (4.5). To address this transformation, Shannon292 sug-
gested using ”differential” entropy, defined as

𝐻𝑑(𝑋) = − ∫
𝒳
d𝑥 𝑃(𝑥) ln𝑃(𝑥), (4.8)

for continuous distributions. However, this formulation introduces new
complications. From the normalization condition

1 = ∫
𝒳
d𝑥 𝑃(𝑥),

we note that the probability density 𝑃(𝑥) carries the dimension 1/[𝑥],
which creates issues when computing ln𝑃(𝑥). Furthermore, unlike dis-
crete entropy, which is always positive, differential entropy can take neg-
ative values. This distinction becomes clear when we first consider the
discrete case with normalization 1 != ∑𝑥∈𝒳 𝑝𝑥, where every event occurs
with a certain probability 𝑝𝑥 ∈ [0, 1], which implies that ln 𝑝𝑥 ≤ 0 and
ensures that the entropy is always positive. On the other hand, in the
continuous case, the probability density is normalized such that the area
under its curve integrates to one, which means that 𝑃(𝑥) can take any
value in the range [0, ∞). As a consequence, ln𝑃(𝑥) can take any value
in the range (−∞, ∞), which means that the differential entropy can be
negative.

Investigating Shannon’s differential entropy, Jaynes identified a funda-
mental flaw in its definition in Eq. (4.8),291, iii namely that it lacks invari-iii Jaynes noted: ”Unfortunately, Shan-

non did not derive this formula, and
rather just assumed it was the correct
continuous analogue of discrete entropy,
but it is not.”293

ance under variable transformations 𝑥 ↦ ̃𝑥. Jaynes corrected this and
derived the correct continuous limit of the Shannon entropy, referred to
as ”relative” entropy

𝐻𝑟(𝑋) = − ∫
𝒳
d𝑥 𝑃(𝑥) ln 𝑃(𝑥)

𝑚(𝑥) , (4.9)

where the invariant measure 𝑚(𝑥) is introduced that transforms identi-
cally as the probability density 𝑃(𝑥) under the variable transformation:

𝑥 ↦ ̃𝑥 ∶ 𝑃(𝑥)
𝑚(𝑥) = 𝑃( ̃𝑥)

𝑚( ̃𝑥) .

This ensures that the relative entropy 𝐻𝑟(𝑋) does not depend on the
choice of coordinates or units.

The invariant measure 𝑚(𝑥, 𝑦) of two coordinates can be chosen to fac-
torize into single-coordinate functions, i.e.

𝑚(𝑥, 𝑦) = 𝑚(𝑥)𝑚(𝑦). (4.10)

This factorization guarantees that if either 𝑥 or 𝑦 changes, the measure
𝑚(𝑥, 𝑦) automatically updates to reflect the changes in those coordinates.
Consequently, theMI preserves its invariance even after the introduction
of the invariant measure

𝐼d(𝑋, 𝑌) = 𝐻d(𝑋) + 𝐻d(𝑌) − 𝐻d(𝑋, 𝑌)
= 𝐻r(𝑋) + 𝐻r(𝑌) − 𝐻r(𝑋, 𝑌)

+ ∫ d(𝑥, 𝑦)𝑃(𝑥, 𝑦) [ln𝑚(𝑥) + ln𝑚(𝑦) − ln𝑚(𝑥)𝑚(𝑦)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

= 𝐼r(𝑋, 𝑌). (4.11)
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While it does not matter whether we use the differential entropy or the
corrected relative entropy for the computation of MI, this does not hold
when calculating the NMI because 𝐻r(𝑋) ≠ 𝐻d(𝑋). Therefore, it is
crucial to compute the correct relative entropy for the normalization
in Eq. (4.7) Otherwise, the normalization factor would, e.g., depend on
whether we measure distances in nanometers or Angström.

4.3 A Nonparametric Estimator for Mutual
Information

Attribution:

The estimator presented in the sections 4.3 and 4.4 was originally
proposed in the PhD thesis of D. Nagel (Ref. 96).

Due to its scalability, we will use the KSG-estimator to compute the NMI.
Since it is already capable of estimating the MI, we need to extend it to
compute relative entropies as well.241 Following Ref. 241, we will briefly
revisit the most important steps in their derivation.

We start with a continuous random variable 𝑋 with values in somemetric
space; that is, we can define a distance function 𝑑(𝑥, 𝑥′) between any two
realizations 𝑥 and 𝑥′ of the random variable. The differential entropy of
𝑋 can be estimated using Eq. (4.8), and we can interpret it (up to a minus
sign) as an average of ln𝑃(𝑥) over all realizations 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁} of
the random variable 𝑋:

𝐻̂𝑑(𝑋) = − 1
𝑁

𝑁
∑
𝑖=1

ln𝑃(𝑥𝑖) = −⟨𝑃(𝑥)⟩

Thus, the challenge lies in finding an unbiased estimator for ln𝑃(𝑥).
Instead of directly estimating the probability density 𝑃(𝑥), the KSG-
estimator uses 𝑘-nn distances as a proxy: in a region with high density,
the 𝑘-nn distances will be small, and in a region with low density, the
𝑘-nn distances will be large. To this end, we consider the probability
distribution 𝑃𝑖

𝑘(𝜖𝑖) for the distance 𝜖𝑖 between 𝑥𝑖 and its 𝑘-th nearest
neighbor 𝑥𝑘. This distribution can be characterized by the following
conditions occurring simultaneously:

1. 𝑘 − 1 data points are located at smaller distances 𝜖𝑖 from 𝑥𝑖.
2. 𝑁 − 𝑘 − 1 data points are located at larger distances 𝜖𝑖 from 𝑥𝑖.
3. exactly one data point lies within the infinitesimal shell [𝜖𝑖, 𝜖𝑖 +

d𝜖𝑖].

Using the multinomial theorem, we can assign the data points to one of
these three cases:

𝑃𝑖
𝑘(𝜖𝑖) d𝜖𝑖 = (𝑁 − 1)!

1!(𝑘 − 1)!(𝑁 − 𝑘 − 1)!
d𝑝𝑖(𝜖𝑖)
d𝜖𝑖

d𝜖𝑖𝑝𝑘−1
𝑖 (1 − 𝑝𝑖)𝑁−𝑘−1

= 𝑘(𝑁 − 1
𝑘 )d𝑝𝑖(𝜖𝑖)

d𝜖𝑖
d𝜖𝑖𝑝𝑘−1

𝑖 (1 − 𝑝𝑖)𝑁−𝑘−1, (4.12)
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where (𝑛
𝑘) represents the binomial coefficient and 𝑝𝑖 denotes the mass of

the hypersphere of radius 𝜖𝑖 around 𝑥𝑖:

𝑝𝑖(𝜖𝑖) = ∫
||𝑥−𝑥𝑖 ||≤𝜖𝑖

d𝑥 𝑃(𝑥)

Using Eq. (4.12), we can now compute the expectation value of ln 𝑝𝑖(𝜖𝑖)

⟨ln 𝑝𝑖(𝜖𝑖)⟩ = ∫ d𝜖𝑖𝑃𝑖
𝑘(𝜖𝑖) ln 𝑝𝑖(𝜖𝑖)

= 𝑘(𝑁 − 1
𝑘 ) ∫

1

0
d𝑝𝑖𝑝𝑘−1

𝑖 (1 − 𝑝𝑖)𝑁−𝑘−1 ln 𝑝𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= Γ(𝑘)Γ(𝑁−𝑘)

Γ(𝑁) [𝜓(𝑘)−𝜓(𝑁)]

= 𝜓(𝑘) − 𝜓(𝑁). (4.13)

𝜓(𝑘) denotes the digamma function, that satisfies the recursion 𝜓(𝑛+1) =
𝜓(𝑛) + 1/𝑛, with the Euler-Mascheroni constant defining the starting
value 𝜓(1) = −𝛾 ≈ −0.577.

This is the key result of the KSG-estimator: while direct computation of
𝑃(𝑥) is not possible, the expectation value of ln 𝑝𝑖(𝜖) can be computed be-
cause of the known analytical form of 𝑃𝑖

𝑘(𝜖𝑖) in Eq. (4.12). To return to the
entropy estimation, we now just need to relate ⟨ln 𝑝𝑖(𝜖𝑖)⟩ back to ln𝑃(𝑥𝑖).
Under the assumption that the probability density is approximately con-
stant within the local neighborhood around 𝑥𝑖, we approximate:

𝑝𝑖(𝜖𝑖) ≈ 𝑐𝑑(2𝜖𝑖)𝑑𝑃(𝑥𝑖),

where 𝑐𝑑 is the volume of a 𝑑-dimensional unit ball and 𝑃(𝑥𝑖) the density
of the 2𝜖 ball around 𝑥𝑖. Taking the logarithm on both sides and using
Eq. (4.13), we find

ln𝑃(𝑥𝑖) ≈ 𝜓(𝑘) − 𝜓(𝑁) − ln 𝑐𝑑 − 𝑑⟨ln 2𝜖𝑖⟩.

Figure 4.3 | Determination of 𝜖𝑖 in the
joint space via 𝜖𝑖 = max{𝜖𝑥,𝑖, 𝜖𝑦,𝑖} (here
for a fixed 𝑘 = 1). 𝑛𝑥,𝑖 and 𝑛𝑦,𝑖 denote
the number of neighbors in the marginal
spaces that fall within the distance 𝜖𝑖.

This finally leads to the KSG-estimator for the entropies

𝐻̂d(𝑋) = −𝜓(𝑘) + 𝜓(𝑁) + ln 𝑐𝑑 + 𝑑
𝑁

𝑁
∑
𝑖=1

ln 2𝜖𝑖.

𝐻̂d(𝑋, 𝑌) = −𝜓(𝑘) + 𝜓(𝑁) + ln(𝑐𝑑𝑋
𝑐𝑑𝑌

) + 𝑑𝑋 + 𝑑𝑌
𝑁

𝑁
∑
𝑖=1

ln 2𝜖𝑖

= −𝜓(𝑘) + 𝜓(𝑁) + ln(𝑐𝑑𝑋
𝑐𝑑𝑌

) + (𝑑𝑋 + 𝑑𝑌)⟨ln 2𝜖⟩ (4.14)

In theory, this would provide us with all the means to compute the MI
via Eq. (4.3). However, the 𝑘-nn distances in the joint space (𝑋, 𝑌) are
systematically larger than in the marginal spaces, which inevitably leads
to a bias in the estimation of the MI. To address this, the KSG-estimator
fixes the distance scale 𝜖𝑖 in the joint space and then counts how many
neighbors fall within the same distance in each marginal space 𝑛𝑥 and
𝑛𝑦 (see Fig. 4.3). This ensures the same distance scales in all subspaces
and thus ensures that the finite-sample biases in the entropy estimates
fluctuate together and thus largely cancel out in Eq. 4.3. These estimators
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lead to the (differential) entropy

𝐻̂d(𝑋) = − 1
𝑁

𝑁
∑
𝑖=1

𝜓(𝑛𝑥,𝑖 + 1) + −𝜓(𝑁) + ln 𝑐𝑑𝑋
+ 𝑑𝑋

𝑁
𝑁

∑
𝑖=1

ln 2𝜖𝑖

= −⟨𝜓(𝑛𝑥 + 1)⟩ + 𝜓(𝑁) + ln 𝑐𝑑𝑋
+ 𝑑𝑋⟨ln 2𝜖⟩ (4.15)

Substituting 𝐻(𝑋) and 𝐻(𝑋, 𝑌) in Eq. (4.3) with eqs. (4.15) and (4.14), we
find the final estimator for the MI

𝐼(𝑋, 𝑌) = 𝜓(𝑁) + 𝜓(𝑘) − ⟨𝜓(𝑛𝑥 + 1) + 𝜓(𝑛𝑦 + 1)⟩. (4.16)

Importantly, the specific dimensionality 𝑑𝑋 and 𝑑𝑌 do not affect the al-
gorithmic structure, as the 𝑘-nn framework works in any dimension, al-
lowing the KSG-estimator to be applied to arbitrarily high-dimensional
data. While the KSG-estimator in Eq. (4.16) works perfectly fine for the
computation of non-normalized MI, it is not suited for the computation
of NMI due to its invariance with respect to variable transformations.

4.4 Deriving an Estimator for Normalized
Mutual Information

As explained above, we, therefore, need to modify the KSG-estimator
such that it computes the relative entropies instead of the differential
ones. Employing the relative entropy in Eq. (4.9), this introduces the
invariant measures into the marginal entropy estimator

𝐻̂r(𝑋) = −⟨ 𝑃(𝑋)
𝑚(𝑋) ⟩ = 𝐻̂d(𝑋) + ⟨ln𝑚(𝑋)⟩

= −⟨𝜓(𝑛𝑥 + 1)⟩ + 𝜓(𝑁) + ln 𝑐𝑑𝑋
+ 𝑑𝑋⟨ln 2𝜖⟩ + ⟨ln𝑚(𝑋)⟩,

(4.17)

and analogously for the joint entropy

𝐻̂r(𝑋, 𝑌) = 𝐻̂d(𝑋, 𝑌) + ⟨ln𝑚(𝑋, 𝑌)⟩,
= −𝜓(𝑘) + 𝜓(𝑁) + ln(𝑐𝑑𝑋

𝑐𝑑𝑌
) + (𝑑𝑋 + 𝑑𝑌)⟨ln 2𝜖⟩ + ⟨ln𝑚(𝑋, 𝑌)⟩.

(4.18)

4.4.1 Estimation of the Invariant Measure

After establishing the scale and parameterization invariance of the KSG-
estimator through invariant measures, we now must determine the spe-
cific form of these measures. In order to avoid bias through prior as-
sumptions about the data distribution, Jaynes suggested using an invari-
ant measure 𝑚(𝑋) that reflects complete ignorance about the underlying
data structure—essentially assuming a uniform probability density.291

For the one-dimensional case of data {𝑥𝑖} distributed in the interval be-
tween 𝑎 and 𝑏, this yields

1 = ∫
𝑏

𝑎
d𝑥 𝑚 ⇒ 𝑚 = 1

𝑏 − 𝑎 ,
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meaning that the invariant measure is simply a constant and is defined
by the range of the data. While this might work reasonably well in one-
dimensions, the assumption of uniform samplingwithin a 𝑑−dimensional
hypercube becomes more problematic in higher dimensions: as the di-
mensionality increases, data points become increasingly sparse (hello
again, curse of dimensionality!) and tend to cluster near the bound-
aries of the hypercube and make this assumption increasingly unrealis-
tic. Outliers can dramatically inflate the estimated volume of the hyper-
cube, which leads to a significant underestimation of probability density
and, thus, to an overestimation of the entropy. Moreover, the effec-
tive dimensionality of MD simulation data is typically far lower than
the full dimensionality, as the dynamics are constrained by, e.g., bonds
between atoms or hydrophobic interactions, effectively creating highly
non-uniform distributions.

To overcome this limitation, we propose an alternative estimator for
the invariant measure. Following Jaynes’ suggestion of complete igno-
rance,291 we define the invariant measure 𝑚(𝑋) and 𝑚(𝑋, 𝑌) as the in-
verse of the corresponding volumes enclosed by the data points, i.e.,

𝑚(𝑋) = 1/𝑉(𝑋) and 𝑚(𝑋, 𝑌) = 1/𝑉(𝑋, 𝑌).

Here, we will only consider quantities that are already computed in the
original KSG-estimator, namely the 𝑘-nn distances 𝜖, the number of data
points 𝑛 whose distance from a considered data point is less than 𝜖, and
the volume 𝑐𝑑 of the 𝑑−dimensional unit ball. This will maximize com-
putationally efficiency, and it maintains scalability to large data sets.

To get a better estimate of the actual volume spanned by all data points,
instead of assuming a 𝑑−dimensional hypercube, we will approximate
the volume as 𝑁 times the local neighborhood (mean) volume of a single
data point ⟨(2𝜖)𝑑𝑋+𝑑𝑌 ⟩. In order to avoid overcounting, we divide by the
number of nearest neighbors 𝑘, yielding

𝑉̂(𝑋, 𝑌) = 𝑁
𝑘 𝑐𝑑𝑋

𝑐𝑑𝑌
⟨(2𝜖)𝑑𝑋+𝑑𝑌 ⟩. (4.19)

Again, we demand factorization [see Eq. (4.10)]

𝑉̂(𝑋, 𝑌) = 𝑉̂(𝑋)𝑉̂(𝑌),

leading to the invariant measuresiviv Just like in Jaynes’ derivation of the
relative entropy,291 we drop the term
ln𝑁. Similarly, we also neglect ln 𝑘,
since it does not depend on the data and
thus does not affect the normalization.

ln 𝑚̂(𝑋) = − ln 𝑐𝑑𝑋
− 𝑑𝑋

𝑑𝑋 + 𝑑𝑌
ln⟨(2𝜖)𝑑𝑋+𝑑𝑌 ⟩, (4.20)

ln 𝑚̂(𝑋, 𝑌) = − ln(𝑐𝑑𝑋
𝑐𝑑𝑌

) − ln⟨(2𝜖)𝑑𝑋+𝑑𝑌 ⟩. (4.21)

Substituting these expressions back into eqs. (4.17) and (4.18), we find
the final results for the entropy estimators:

𝐻̂r(𝑋) = −⟨𝜓(𝑛𝑥 + 1)⟩ + 𝜓(𝑁) + 𝑑𝑋⟨ln ̃𝜖⟩, (4.22)

𝐻̂r(𝑋, 𝑌) = −𝜓(𝑘) + 𝜓(𝑁) + (𝑑𝑋 + 𝑑𝑌)⟨ln ̃𝜖⟩, (4.23)

where ̃𝜖 = 𝜖/𝑑√⟨𝜖𝑑⟩ represents the scaling invariant 𝑘-nn radius and 𝑑 =
𝑑𝑋 + 𝑑𝑌 the dimensionality of the space (𝑋, 𝑌).
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Based on the inequalities given in Eq. (4.6), the MI in Eq. 4.7 can now fi-
nally be normalized. Equations (4.20)-(4.23) constitute the main theoret-
ical contributions and address two main challenges in the computation
of (normalized) MI: The first challenge concerns the accurate estimation
of probability distributions in multidimensional spaces when working
with finite datasets, a problem worsened by the curse of dimensionality.
Employing 𝑘-nearest neighbor statistics, robust local density allows the
approximation of probability distributions and their entropy estimates
without requiring the explicit construction of probability density func-
tions. The second challenge is then the normalization of the MI, which
is necessary for a meaningful interpretation of the MI values and enables
comparisons across different datasets. This normalization is achieved
through the use of relative entropy, which can conveniently be computed
using the same 𝑘-nearest neighbor statistics that are already computed
as part of the KSG-estimator algorithm. Together, these contributions
provide a theoretically robust and computationally efficient framework
for the computation of a scale-invariant MI that reliably quantifies the re-
lation between different random variables, even in the multidimensional
case.

4.4.2 Validation of the NMI Estimator

Figure 4.4 | Estimation of the volume
of (a) a uniform distribution and (b)
a donut-shaped distribution. Adapted
with minor changes from Ref. 3. Copy-
right © (2024) Authors of Ref. 3.

It is an obvious test to check whether the volume estimator in Eq. (4.19)
reliably approximates the actual volume. To this end, we generate two
simple example distributions:

1. a uniform distribution (𝑥, 𝑦) ∈ [0, 1]2 and
2. a ”donut” distribution, where we uniformly sample data points in

the annulus 0.5 ≤ √𝑥2 + 𝑦2 ≤ 1.

For both distributions, we can compute the true volumes analytically so
that we can divide the estimated volume 𝑉̂(𝑋, 𝑌) by the exact volume
𝑉ex(𝑋, 𝑌) such that a perfect estimate would yield a ratio of 𝑉̂/𝑉ex =
1. In Fig. 4.4, we show the results of our volume estimator for various
numbers of nearest neighbors 𝑘 as a function of the sample size 𝑁. In
order to suppress large fluctuations of 𝑉̂ for small values of N, we average
over 100 independent realizations of both probability distributions.

In the case of the uniform distribution, we find that our 𝑘-nn volume
estimator converges rapidly towards the exact volume and depends only
weakly on the number of nearest neighbors 𝑘—given that the sample size
is sufficiently large (see Fig. 4.4 a). In this specific case, even the simple
”naive” volume estimator that relies solely on the data distribution bound-
aries, 𝑉̂max = (𝑥max − 𝑥min)(𝑦max − 𝑦min), works perfectly well. However,
in the second case of the donut distribution (see Fig. 4.4 b), the naive
volume estimator obviously fails to capture the actual volume due to the
empty space in the center. On the other hand, the 𝑘-nn volume estima-
tor reliably approximates the correct volume. These results demonstrate
that our 𝑘-nn volume estimator provides reliable and robust estimates of
the actual volume spanned by the data points. Since we only assume lo-
cal density homogeneity around each data point, this estimator is partic-
ularly well-suited for complex MD data, where the underlying structure
is unknown.
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To evaluate the accuracy and performance of our NMI estimator defined
in Eq. (4.7), we will now employ it to a two-dimensional toy model with
the distribution

𝑃 (𝑟 = √𝑥2 + 𝑦2) ∝ exp [− (𝑟 − 𝑟0)2

2𝜎2 ] , (4.24)

where 𝑟0 = 0.75 represents the mean and 𝜎 = 1/8 denotes the standard
deviation. We subsequently compare the results of our 𝑘-nn estimator 𝐼N
with 𝑘 = 5 against the most established method, that is, the histogram-
based approach 𝐼N, hist. Since we are considering one-dimensional ran-
dom variables 𝑋 and 𝑌, we expect this discrete estimation of the NMI
via a binning approach to be accurate for large sample sizes 𝑁.167 Nev-
ertheless, as discussed in Sec. 3.1.2, the precision of probability density
estimation, and consequently entropy calculation, critically depends on
the choice of bin number per dimension 𝑁bins. Comparing the NMI

Figure 4.5 | Estimation of the NMI for
the 2D toy model defined in Eq. (4.24)
for different sample sizes and number
of bins per dimension 𝑁bins. (a) Com-
parison between our NMI estimator and
the discrete histogram-based approach;
both normalized via the geometric mean
of the marginal entropies √𝐻(𝑋)𝐻(𝑌).
(b) Comparison of various estimators for
NMI, with standard deviations indicated
by the shaded areas. The compared esti-
mators include: 𝑘-nn estimator 𝐼N𝐻max
(𝑘 = 5), the 2D histogram-approach
𝐼N, hist𝐻max, the Gel’fand Yaglom NMI
𝐼G, and 𝐼N, d using differential entropy.
For each value of 𝑁, 100 independent
realizations were sampled and the NMI
computed. Adapted with minor changes
from Ref. 3. Copyright ©(2024) Authors
of Ref. 3.

for various choices of 𝑁bins and sample sizes 𝑁, we confirm that the
histogram-based approach indeed heavily depends on both parameters
(see Fig. 4.5 a). Generally, this simple binning approach overestimates
the NMI, which is why Tiwary and coworkers previously suggested the
heuristic of choosing 𝑁bins such that the NMI is minimized.167 Indeed,
this heuristic results in the closest approximation of the results from 𝑘-
nn estimator 𝐼N.

The challenge of selecting an appropriate number of bins is the trade-off
between avoiding too few bins, which would fail to capture relationships
in the data, and too many bins, which drastically overestimates the NMI.
The bin-dependency problem becomes most apparent if we consider the
(extreme) case where the binning is so fine-grained that every bin in 𝑋
and 𝑌 contains exactly one data point, i.e., 𝑁bins = 𝑁. In such a scenario,
each occupied bin in the joint histogram has equal probability mass of
𝑝𝑥 = 1/𝑁 = 𝑝𝑥,𝑦, and every row and column contains exactly one data
point (all other bins are empty and thus 𝑝𝑥,𝑦 = 0). The MI calculation
then yields:

𝐼(𝑋, 𝑌) = ∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑝𝑥,𝑦 ln
𝑝𝑥,𝑦
𝑝𝑥𝑝𝑦

= ∑
𝑥∈𝒳

∑
𝑦∈𝒴

1
𝑁 ln

1/𝑁
(1/𝑁)(1/𝑁)

= ∑
𝑥∈𝒳

∑
𝑦∈𝒴

1
𝑁 ln𝑁 = ln𝑁.

Since 𝑝𝑥 = 1/𝑁, the marginal entropies become

𝐻(𝑌) = 𝐻(𝑋) = − ∑
𝑥∈𝒳

𝑝𝑥 ln 𝑝𝑥 = − ∑
𝑥∈𝒳

1/𝑁 ln 1/𝑁 = ln𝑁,

resulting in an NMI of

𝐼N(𝑋, 𝑌) = 𝐼(𝑋, 𝑌)
√𝐻(𝑋)𝐻(𝑌)

= ln𝑁
√ln𝑁 ln𝑁

= 1.

That being said, we are considering one-dimensional random variables
𝑋 and 𝑌 here. In the case of Cartesian coordinates, the joint density 𝑝𝑥,𝑦
becomes six-dimensional, making the binning approach prohibitive and
statistically unreliable due to the low resolution needed to accommodate
𝑁6

bins bins in memory. In contrast, 𝑘-nn methods can be applied to ar-
bitrary dimensions without the exponential increase in memory require-
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ments, rendering them particularly well-suited for multidimensional MD
data.

In order to address the sample size dependency that we can observe for
both methods (compare Fig. 4.5 a), we define 𝐻max as the highest achiev-
able entropy for a given number of frames 𝑁. As analyzed above, this cor-
responds to 𝐻max = ln𝑁. Both the 𝑘-nn estimator 𝐼N and the histogram-
based estimator 𝐼N, hist exhibit a characteristic 1/𝐻max scaling behavior
with 𝑁. Therefore, multiplying the results of both estimators with 𝐻max,
Fig. 4.5 b shows that the resulting NMI measures become largely inde-
pendent of the sample size 𝑁, and the fluctuations of the NMIs (shaded
areas) fall below the line width for 𝑁 ≳ 103, indicating fast statistical
convergence.

Finally, we want to highlight the critical importance of introducing an in-
variantmeasurewhen calculating 𝐼N. In Fig. 4.5 b, we show the results for
𝐼N, d, which are computed using the differential entropy in Eq. (4.8) with-
out appropriate treatment of the scale invariance. This approach yields
negative values for the NMI, which is physically meaningless since we
require that the NMI is bound between 0 and 1. As a normalized quantity
that does not depend on entropies, we recall the Gel’fand-YaglomNMI233

defined in Eq. 3.8 as 𝐼GY = √1 − exp[−2𝐼(𝑋, 𝑌)/(𝑑𝑋 + 𝑑𝑌)]. Analogous
to the results in the last chapter, we find that 𝐼GY overestimates the NMI
values, which are significantly larger than the values obtained from the
𝑘-nn estimator and from the binning approach.

4.4.3 Runtime

In order to evaluate the performance and scalability of the NMI estima-
tor, we performed a runtime benchmark using synthetic data generated
according to:

𝑥𝑖 = 𝒩(±1, 1), with alternating signs for successive samples,

𝑦𝑖 = 𝑥𝑖 + 0.2𝒩(0, 1),

where 𝒩(𝜇, 𝜎2) denotes a normal distribution with mean 𝜇 and variance
𝜎2. This creates highly correlated data points, where 𝑦 is a noisy function
of 𝑥. In Fig. 4.6 a, we show the runtime of the NMI estimator as a function
of the sample size 𝑁 and the number of parallel jobs. We can observe
that the runtime scales approximately in the order of 𝒪(𝑁 ln𝑁), which
is expected for the KSG-estimator due to the 𝑘-nn search. Parallel jobs
can speed up the computation, but the performance improvements are
becoming increasingly smaller with the number of parallel jobs.

Figure 4.6 | Runtime benchmark of the
NMI estimator using synthetic data on
an Intel® Core™ i9-14900K CPU. (a) run-
time as a function of sample size and
number of parallel jobs; (b) runtime as
a function of the dimensionality of the
data and sample size. For all computa-
tions, we used 𝑘 = 3.
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Fig. 4.6 b shows the runtime for different sample sizes 𝑁 as a function of
the dimensionality 𝑑 of the data. Here, we observe a power-law scaling of
the runtimewith respect to the dimensionality, with theoretical contribu-
tions containing Euclidean distance computations [𝒪(𝑑)] and 𝑘-nn search
operations that degrade with increasing dimensionality [𝒪(𝑁 ln𝑁)]. For
MD applications that involve Cartesian coordinates (𝑑 = 3), this power
law scaling remains computationally manageable, even for large sample
sizes in the order of 𝑁 ≈ 104 − 106.

Based on these runtime benchmarks, we expect the following runtimes
for the computation of the full pairwise NMI matrix for a typical MD tra-
jectory consisting of 𝑁 = 105 frames: approximately 24 hours (1 hour) to
analyze 1500 (300) internal coordinates such as dihedral angles or inter-
residual distances, and approximately 24 hours (1 hour) for a protein con-
sisting of 140 (26) amino acids based on their three-dimensional Carte-
sian coordinates of e.g. their C𝛼-atoms.

4.4.4 Software

The 𝑘-nn estimator for the NMI has been implemented as an open-
source Python package (NorMI) that follows the scikit-learn API con-
ventions.252 The package can be installed via pip or conda: pip/conda
install normi, and the source code and documentation can be found
here: https://github.com/moldyn/NorMI. All analyses in this and
the next chapter that involve NMI have been performed using NorMI.

4.5 Concluding Remarks

In this chapter, we have systematically investigated fundamental theoret-
ical and computational challenges involved in quantifying the similarity
between multidimensional random variables. We demonstrated that the
widely-used multidimensional Pearson correlation suffers from critical
flaws, such as the sign cancellation problem, that can obscure perfect
functional dependencies. While canonical correlation analysis provides
a partial remedy by transforming the data into a new basis, it shares the
most fundamental restriction of the Pearson correlation: the assumption
that the underlying joint probability distribution of the two random vari-
ables is Gaussian distributed.

We showed that mutual information represents a theoretically sound so-
lution by quantifying deviations from statistical independence 𝑃(𝑋, 𝑌) =
𝑃(𝑋)𝑃(𝑌) rather than imposing a specific functional form tomeasure the
relationship between 𝑋 and 𝑌. However, extending mutual information
to the multidimensional case leads to new challenges, particularly with
respect to proper normalization. Therefore, the central theoretical con-
tribution of this chapter is the development of a scale and coordinate
system invariant mutual information estimator that is appropriately nor-
malized. To this end, we extended the Kraskov-Stögbauer-Grassberger to
compute relative entropies instead of the scaling-dependent differential
entropies while maintaining its efficient 𝑘-nearest neighbor framework
for estimating mutual information. To do so, we introduced suitable in-
variant measures based on 𝑘-nearest neighbor volume estimation and

https://github.com/moldyn/NorMI
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showed that the resulting estimator converges reliably to the actual val-
ues of known distributions. Furthermore, this framework avoids most
issues related to the curse of dimensionality and can be applied to, e.g.,
Cartesian coordinates in MD simulations without any difficulty.

While this chapter has focused on establishing the theoretical founda-
tions and computational methodology, we will demonstrate the practi-
cal impact of these advances in the next chapter, where we thoroughly
investigate the protein T4 lysozyme.
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Parts of this chapter are based on our publications:

Cooperative Protein Allosteric Transition Mediated
by a Fluctuating Transmission Network
M. Post, B. Lickert, G. Diez, S. Wolf, and G. Stock J. Mol. Biol. 2022
434 (17), 167679,
doi: https://doi.org/10.1016/j.jmb.2022.167679.

Accurate Estimation of the Normalized Mutual Information
of Multidimensional Data
D. Nagel, G. Diez and G. Stock, J. Chem. Phys. 2024 161 (5), 054108,
doi: https://doi.org/10.1063/5.0217960.

In this chapter, we present a comprehensive case study on T4 lysozyme
(T4L; see Sec. 2.5), applying the correlation analysis methods developed
in the previous chapters to thoroughly investigate the allosteric transi-
tion between the open and closed state.

We structure this chapter in four main parts. First, we identify the micro-
scopic mechanism driving T4L’s conformational change by constructing
a local network of highly correlated inter-residue distances that move in
a coordinated manner. This contact-based approach reveals the coopera-
tive nature of the conformational change and allows the identification of
essential internal coordinates involved in the long-range allosteric cou-
pling.2 In the second part, we employNMI of Cartesian C𝛼-coordinates to
construct a residue interaction network that captures global correlation
patterns across the entire protein. Finally, we integrate these two some-
what complementary approaches into a unified picture of the allosteric
transition in T4L. We conclude by exploring practical, more technical
aspects of multidimensional similarity measures, some of which were
already discussed more theoretically in the previous chapter.

Allostery in a Nutshell

Figure 5.1 | Simple schematic represen-
tation of allostery: the binding of a lig-
and in yellow to the allosteric site of a
protein in bright blue (left) induces a con-
formational change in the protein at a
distant site (right).

Before studying the specific allosteric transition in T4L, we want to
briefly introduce the general concept of allostery itself. Allostery rep-
resents a form of distant regulation where an effector molecule (such
as a ligand) causes a perturbation at one site of the molecule, result-
ing in a functional change at a remote site through alteration of shape
and/or dynamics (see Fig. 5.1).294 A paradigmatic example is the protein
hemoglobin, where oxygen binding at one site enhances oxygen binding
affinity at the three remaining sites, ensuring efficient oxygen transport
throughout the cardiovascular system.31,295,296

https://doi.org/10.1016/j.jmb.2022.167679
https://doi.org/10.1063/5.0217960
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Despite allosteric couplings appearing to be ubiquitous in protein sys-
tems,297 the underlying dynamical processes—including theirmicroscopic
details and temporal evolution during conformational changes—remain
poorly understood.55 This is in stark contrast to the well-characterized
field of protein folding, where decades of combined experimental and
theoretical research have established a solid understanding of the gov-
erning principles, including cooperative two-state and multistate down-
hill folding,298 along with dynamical mechanisms such as zipping or
diffusion-limited processes.299 Unlike protein folding, where large-scale
conformational changes during folding are relatively straightforward to
detect, the subtle local structural changes occurring in many allosteric
transitions are much more challenging to observe in experiments and
simulations.93,300

Figure 5.2 | Structure of T4L in the open
state, indicating the opening coordinate
𝑥 and the locking coordinate 𝑝.

To this end, we consider T4L as a well-studied example of a bistable two-
domain protein.99,218–220 While it might not be a usual example of an al-
losteric protein (it lacks a ligand binding site), previous analysis hinted at
a hidden lockingmechanism that allosterically couples the distant mouth
and hinge region of the protein.98

The Locking Mechanism in T4L

The open↔closed transition of T4L is typically characterized by the
mouth opening width 𝑥 (see Fig. 5.2), which can, e.g., be quantified by
the distance 𝑥 ≡ 𝑑20,145 between residues 20 and 145. Analysis of the
50 𝜇s MD trajectoryi by Ernst et al. in Fig. 5.3 b98 reveals that transitionsi In contrast to Ref. 2, we excluded the

last 11 𝜇s of the trajectory because the 𝛽-
sheets at the lower jawwere temporarily
deforming around 𝑡 = 51 𝜇s, potentially
introducing non-physical artifacts.261

between open and closed occur on a microsecond timescale, whereas
the transition path times are significantly shorter on the order of a few
nanoseconds. From this data, we estimate equilibrium populations of
approximately 75% for the open state and 25% for the closed state, with
mean waiting times of 𝜏o→c ≈ 4 𝜇s and 𝜏c→o ≈ 2 𝜇s, respectively. These
findings are in excellent agreement with recent experimental results.220

Despite the clear bistable behavior of T4L, with transition times on the
microsecond timescale, the free energy profile Δ𝐺(𝑥) along the mouth
opening coordinate exhibits a surprisingly low energy barrier of only
Δ𝐺‡ ≈ 1 𝑘b𝑇. According to transition state theory,301 the reaction rate
is given by 𝑘 = 1

𝜏 = 𝑘0 exp(−Δ𝐺‡/𝑘b𝑇), where 𝜏 is the mean waiting
time between transitions. With such a small barrier of Δ𝐺‡ ≈ 1 𝑘b𝑇, it is
evident that the transition rate is predominantly caused by the prefactor
𝑘0 rather than the thermodynamic barrier height. This indicates that
the mouth opening coordinate 𝑥 solely reflects the consequences of the
allosteric transition but not the originating cause itself.

As mentioned earlier, the actual process is mediated by a locking mech-
anism, which allows the side chain of Phe4 to change from a solvent-
exposed to a buried state. This locking mechanism can be characterized
by the locking coordinate 𝑝 ≡ 𝑑4,60, which is the hydrophobic locking
distance between Phe4 and Lys60. Looking at its time trace in Fig. 5.3 b,
we confirm that 𝑝 perfectly discriminates between the open and closed
state, with 𝑝 ≲ 0.7 nm denoting the locked, hydrophobically buried state
and 𝑝 ≳ 0.7 nm representing the free, solvent-exposed state. The cou-
pling between 𝑥 and 𝑝 becomes evident when looking at the free energy
landscape Δ𝐺(𝑥, 𝑝) in Fig.5.3 a, which shows four metastable states: pre-
dominantly the open state S1 and closed state S4 alongside two sparsely
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Figure 5.3 | Two-dimensional model of the allosteric transition in T4L using the opening coordinate 𝑥 ≡ 𝑑20,145 and the locking
coordinate 𝑝 ≡ 𝑑4,60. (a) Two-dimensional free energy landscape Δ𝐺(𝑥, 𝑝) suggesting four metastable states S1-S4. (b) MD time traces
of the opening coordinate 𝑥 (top) and the locking coordinate 𝑝 (bottom) and their corresponding free energy landscapes. The gray lines
indicate Gaussian filtered time traces 𝑔(𝑥) = 1

√2𝜋𝜎2
exp(− 𝑥2

2𝜎2 ), providing a weighted smoothing for enhanced visualization. Adapted

with changes from Ref. 2. Copyright © (2022) The Authors.

populated transition states S2 and S3. This already gives some insights
into allosteric transitions as the system appears to follow a preferred
route S1 → S2 → S3 → S4 when transitioning from the open to the closed
state, with the reverse transition following the same route in the oppo-
site direction, S4 → S3 → S2 → S1. Nevertheless, the two-dimensional
model still remains incomplete, as the highest free energy barrier around
Δ𝐺‡ ≈ 6 𝑘b𝑇 is still too low to account for the observed waiting times in
themicrosecond range. In the following, we demonstrate that themecha-
nism underlying the open↔closed transition is a cooperative conforma-
tional cascade that propagates from the Phe4 locking site in the hinge
region to the distant mouth region.

5.1 Constructing a Contact Network

To investigate the process of allosteric transmission between the mouth
and hinge region, we analyze inter-residue contact distances and first
side-chain dihedral angles. This choice of coordinates is motivated by
the fact that allosteric transitions arise from the propagation of local per-
turbations, and contact distances capture the strengthening and weaken-
ing of bonds between different residues, while side-chain dihedral angles
describe local conformational rearrangements of the side chains. Requir-
ing a contact 𝑑𝑖,𝑗 ≤ 0.45nm to be formed for at least 1% of the simulation
time, we obtain 556 contact distances, that are shown in the contact map
in Fig. 5.4.ii As some residues, namely those of the type Ala, Gly, or Pro, ii Here, we consider only heavy atoms,

while the Ref. 2 erroneously included
hydrogens. We also excluded contacts
formed between the 𝑖−th and 𝑖 + 𝑗-th
residues where 𝑗 ≤ 4, as they stabilize
the 𝛼-helical structures and are therefore
not of interest.

do not exhibit or change the side-chain dihedral angle, we ended up with
131 dihedral angles 𝜒𝑛.

5.1.1 MoSAIC Analysis

To study their collective behavior, we computed the linear correlation
matrix according to Eq. (3.1). We then employed MoSAIC,1 which uses
Leiden clustering244 with the constant Potts model248 and a resolution
parameter of 𝛾 = 0.5, to rearrange the matrix in an approximately
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Figure 5.4 | Contact map of T4L, show-
ing all contacts (𝑑𝑖,𝑗 ≤ 0.45nm) that are
formed for at least 1% of the simulation
time. In the lower diagonal, the contacts
are colored according to their MoSAIC
cluster membership. N and C denote the
N- and C-domain of T4L, respectively.

block-diagonal form. The resulting block-diagonalized correlation ma-
trix (Fig. 5.5 a) shows a clear separation between functionally relevant
motions and background fluctuations (or noise). Four main clusters
emerge from the MoSAIC analysis, while the majority of contact dis-
tances (∼ 85%) exhibit only minor correlations and are therefore as-
signed to the noise cluster. We attribute this to stable intraprotein con-
tacts in T4L that only fluctuate around their mean distance, while con-
tacts on the protein surface undergo frequent formation and breaking,
resulting in random fluctuations.

Among the four main clusters, cluster 1 dominates with 34 highly cor-
related coordinates (32 contact distances and two 𝜒 dihedral angles; see
SI, Tab. C.1) that mediate the open↔closed transition. The spatial distri-
bution of these contact distances within the molecular structure of T4L
(Fig. 5.5 b) already suggests the allosteric communication network: 10
distances monitor the mouth opening/closing, while the remaining 22
are located in the hinge region, with seven of them directly involving
Phe4—highlighting its central role in the mechanism. In contrast, the
remaining three clusters, 2-4, (SI, Fig. C.1) are significantly smaller and
describe local motions that are not related to the global open↔closed
transition. The high average correlation of ⟨∣𝜌∣⟩ = 0.7 within cluster

Figure 5.5 | MoSAIC analysis result-
ing in (a) a block diagonalized correla-
tion matrix containing 556 contact dis-
tances and 131 𝜒 dihedral angles. The
first block (cluster 1) contains 34 highly
correlated coordinates that characterize
the open↔closed transition. (b) Illustra-
tion of the 32 highly correlated contact
distances in cluster 1. Some important
distances are highlighted in cyan: 𝑑4,60,
𝑑5,60, 𝑑22,137, 𝑑20,145 all describing the
opening/closing of the mouth and 𝑑7,12
accounting for the (de)stabilization of
the 𝛼1-helix.
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1 suggests that the allosteric transition is performed by a cooperative
action involving the entire contact network.

This cooperative behavior becomes even more evident when we investi-
gate how the 32 contact distances in cluster 1 behave across both the open
and closed conformational state of T4L.iii To this end, we analyzed the iii In order to obtain the open and

closed parts of the trajectory, we used
the maximum barrier height along the
free energy profile of the locking dis-
tance 𝑝 to discriminate between closed
(𝑝 > 0.7 nm) and open (𝑝 ≤ 0.7 nm)
conformations. The detailed procedure
is described in the supplementary infor-
mation (Fig. C.5).

contact population differences Δ𝑝 = ∣𝑝open − 𝑝closed∣ between the open
and the closed state, as presented in SI, Tab. C.2.302,303 While for 20 con-
tacts, we find Δ𝑝 ≳ 0.7, which hints to a clear binary switching be-
havior, 12 contacts exhibit high correlation despite modest population
changes of Δ𝑝 ≲ 0.2.iv The latter group contains some mechanistically

iv We note that this grouping depends
to some extent on the threshold used
to define when a two residues form a
contact. Here, we calculated the con-
tact populations using the standard def-
inition of 𝑑 ≤ 0.45nm. While widely
used, this uniform cutoff may not cap-
ture the contact formation perfectly for
all distances—the opening distance 𝑥,
for example, shows its local minimum
around ∼ 0.6nm (see Fig. 5.3).

crucial contacts (see next section), including the Glu5-Lys60 salt bridge
(directly neighboring the locking coordinate 𝑝) and the opening distance
𝑥 = 𝑑20,145. This contact population pattern therefore suggests that the
allosteric cooperativity is a result of the coordinated network behavior
that transcends individual contact properties.

Beyond population differences and correlation, we further investigate
the temporal evolution of the contact distances in cluster 1. While the
coordinates clearly follow a similar temporal behavior (see figs. 5.3, 5.6
or SI, C.2), they exhibit different fluctuations in the open and closed
state. For example, the opening coordinate 𝑥 fluctuates considerably
in the open state and only a little in the closed state, while the lock-
ing coordinate 𝑝 shows the opposite behavior. This can be explained by
the fact that amino acid side-chains generally fluctuate less when they
form a contact with other side-chains, while exhibiting larger fluctua-
tions when not being in contact. The high correlation between all dis-
tances in cluster 1 stems from the clear two-state behavior across the
microsecond timescale of all coordinates but less so from their rapid fluc-
tuations within each state, which are not necessarily synchronized. As
all 34 coordinates must transition from one state into the other in order
to achieve a successful open↔closed transition, the process may only
take place if the fluctuations of all coordinates cooperatively align by
chance. This may explain the rarity of the transition events in the order
of microseconds and their relatively short transition path times of a few
nanoseconds.

5.1.2 Essential Coordinates and Their Sequential
Activation

Although all 34 coordinates are strongly correlated and behave cooper-
atively, they serve different functional roles depending on their interac-
tion chemistry. To enable a mechanistic understanding of the allosteric
transition, we will further reduce the number of coordinates and focus
on the contacts that drive the most significant structural rearrangements
based on their chemical nature. This selection yields eleven hydrophobic
contacts, four salt bridges, and three hydrogen bonds, which are listed
in SI, Tab. C.3.

Among these, changes in hydrophobic contacts typically involve com-
plex rearrangements of various atoms that are challenging to interpret
structurally. In contrast, salt bridges and hydrogen bonds exhibit a
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stronger forming and breaking behavior that can be more easily con-
nected to specific structural changes and makes them particularly valu-
able for our mechanistic analysis. We identify three salt bridges with
a particularly clear role: the first salt bridge (Glu5-Lys60) in the hinge
regions complements the above introduced locking coordinate 𝑝 (Phe4-
Lys60), while the second corresponds to the mouth opening width 𝑥
(Glu20-Lys145) and the third (Glu22-Lys137) is located at the very edge
of the mouth (see Fig. 5.5 b).

To understand the temporal relationships among these coordinates, we
investigated their time evolution during individual open↔closed tran-
sitions (SI, Fig. C.2). Interestingly, this analysis reveals that the fourth
salt bridge (Arg8-Glu64), located in the hinge region, seems to compete
with the hydrogen bond 𝑑2,64, which results in a seesaw-like motion
of the 𝛼1-helix with respect to the 𝛼3-helix (structural description in SI,
Fig. C.3). The distance 𝑑7,12 shows unique behavior as it reports on the
(de)stabilization of helix 1 (more below). Among both side-chain dihe-
dral angles in cluster 1, 𝜒4 is mechanistically more relevant as it directly
describes the re-orientation of the Phe4 side chain. 𝜒104 exhibits a similar
temporal behavior but shows more fluctuations whose structural impli-
cations are investigated below. To sum up, we identified six coordinates
(5 distances and 1 dihedral angle) that we can consider essential descrip-
tors of the open↔closed transition: 𝑑5,60, 𝑑4,60, 𝜒4 and 𝑑7,12 characterize
the (un)locking of Phe4 and subsequent 𝛼1-helix rearrangement, while
𝑑20,145 and 𝑑22,137 monitor the opening/closing of the mouth. These six
coordinates effectively describe the core dynamics and can be thereby
considered the most essential internal coordinates.

To demonstrate the synchronized behavior of these six essential coordi-
nates spanning from the hinge to mouth region, we take a close look
at a representative open↔closed transition in Fig. 5.6. Setting the tran-
sition time to 𝑡 = 0, we see that distance 𝑑5,60 changes first, followed
immediately by the response of distances 𝑑4,60, 𝑑22,137 and 𝑑20,145. After

Figure 5.6 | Temporal evolution of six
essential coordinates during a represen-
tative open→closed transition (left, oc-
curring at 3.2 𝜇s) and closed→open tran-
sition (right, occurring at 16.6 𝜇s), re-
spectively. All coordinates are in units
of nm, apart from 𝜒4, which is given
in degrees. We used a Gaussian filter-
ing for enhanced visualization. Adapted
with minor changes from Ref. 2. Copy-
right © (2022) The Authors.
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a few nanoseconds, the angle 𝜒4 responds, with 𝑑7,12 following last, ap-
proximately 10ns later. The simultaneous response of the two distances
𝑑4,60 and 𝑑22,137, describing structures that are spatially separated by ap-
proximately 2.5nm, provides evidence for a direct mechanical coupling
between the two distant mouth and hinge regions of T4L.

5.1.3 Free Energy Perspective on the Cooperative
Transition Mechanisms

Having established the essential six coordinates that describe the al-
losteric transition, we can now return to our initial question regarding
the low free energy barrier ofΔ𝐺‡ ≈ 6 𝑘b𝑇 in the simple two-dimensional
model Δ𝐺(𝑥, 𝑝). By constructing a free energy landscape using these
coordinates, we can see whether this expanded coordinate space now
resolves this energetic inconsistency and yields more realistic waiting
times. To this end, we computed local free energy estimates for trajec-
tory point 𝑿𝑡 employing a local density-based approach. For each time
step, we calculated the local free energy as

Δ𝐺(𝑿𝑡) = −𝑘b𝑇 ln [ 𝑃𝑅(𝑿𝑡)
𝑃max

𝑅
] ,

where 𝑃𝑅(𝑿𝑡) can be estimated using Eq. (2.32). To ensure statistical
robustness, particularly in the sparsely populated barrier regions, we dy-
namically adjusted 𝑅 to maintain at least 10 neighbors within each hy-
persphere.

As an example, we revisit the representative open→closed transition at
𝑡 = 3.2 𝜇s, and show the resulting free energy evolution in Fig. 5.7.v v Additional transition examples are

provided in the supplementary informa-
tion (Fig. C.4).

The analysis includes both the two-dimensional free energy evolution
Δ𝐺(𝑥, 𝑝) (upper panel) and the six-dimensional model (lower panel) for
comparison. We can observe three distinct regimes in the free energy
evolution: before and after the transition, both models show that the
system is in the energy minima associated with—respectively—the open
and closed conformations, with occasional fluctuations that indicate the

Figure 5.7 | Estimation of the barrier
heights of the two-dimensional (upper
panel) and six-dimensional (lower panel)
free energy landscape of T4L, obtained
for the representative open→closed tran-
sition at 𝑡 = 3.2 𝜇s. The gray scatter
points indicate the free energy values
at time 𝑡. Adapted with minor changes
from Ref. 2. Copyright © (2022) The Au-
thors.
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system exploring the boundaries of the energy basins. During the tran-
sition, however, the free energy evolution shows significant differences
between the two-dimensional and six-dimensional model, as the latter
reaches barrier heights as high as ∼ 16 𝑘b𝑇, whereas the two-dimensional
model encounters substantially lower barriers around ∼ 6 𝑘b𝑇.

This energetic difference becomes more apparent when we analyze the
barrier heights across the entire trajectory. To do so, we averaged the
free energy evolution over all open→closed and closed→open transitions
(see SI, Fig. C.4 for the averaging windows).The results, shown in Fig. 5.8,

Figure 5.8 | Probability distribution
of the free energy values along the
transition paths, averaged over all
open→closed (top) and closed→open
(bottom) transitions. Shown are the
probability distributions for the two-
dimensional and six-dimensional model.
Adapted with minor changes from
Ref. 2. Copyright © (2022) The Authors.

reveal that the additional four coordinates substantially increase the en-
ergy barrier heights. Importantly, this increase occurs symmetrically
for both directions of transitions, with the resulting free energy profiles
appearing almost identical, suggesting that the forward and backward
transitions follow a similar mechanism. For a rough estimate of the bar-
rier heights, we associate the barrier regions with the steep descent in
the probability distributions and obtain maximum energies of approxi-
mately (6−8) 𝑘b𝑇 for the two-dimensional model and (13−18) 𝑘b𝑇 for the
six essential coordinates. In order to separate the actual energy barriers
from thermal fluctuations due to equipartition, we subtract average ener-
gies of 1 𝑘b𝑇 and 3 𝑘b𝑇, respectively, and obtain estimates for the barrier
heights of approximately 6 𝑘b𝑇 and 12 𝑘b𝑇 for the two models. These dif-
ferences arise because the original two-dimensional model captures only
the local transition events in the mouth and hinge region, whereas the
six essential coordinates model additionally reflects on the long-range
transmission of the conformational change.

The doubling of the barrier heights from ∼ 6 𝑘b𝑇 to ∼ 12 𝑘b𝑇 provides
quantitative evidence that the allosteric transition in T4L is indeed a co-
operative process. This energetic increase reflects the requirement that
various coordinates must change simultaneously within the brief tran-
sition time of approximately 10ns, which is roughly one-thousandth of
the microseconds long waiting times. Thus, the transition can only oc-
cur if the fluctuations of all coordinates align by chance and enable the
coincidental switching of all relevant interactions, which represents the
hallmark of a cooperative process.

5.2 Constructing a Residue Interaction
Network

Complementing this detailed mechanistic understanding of the coopera-
tive allosteric transition, we want to further investigate its global impact
on the protein structure of T4L. To this end, we consider the similarity
between the Cartesian coordinates of the C𝛼-atoms.

5.2.1 Cartesian Normalized Mutual Information
Reveals Structural Correlation Patterns

Applying our normalized mutual information (NMI) method [eqs. (4.22),
(4.23) and (4.16)] to the (globally) aligned MD trajectory yields the NMI
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matrix 𝐼N of the Cartesian C𝛼 coordinates in Fig. 5.9 a. The diago-
nal exhibits the expected large correlation values between neighboring
residues, with correlation strengths that reflect the underlying secondary
structure. In structured regions, particularly in 𝛼-helices, these diagonal
correlations extend across 3-4 neighboring residues, creating character-
istic broad bands along the diagonal due to stable contacts inside the
helices. In contrast, flexible loop regions display much narrower bands
since they exhibit less stable contacts and higher structural flexibility.

Moreover, the matrix reveals a clear block structure that reflects the two-
domain architecture of T4L. The N-terminal domain (𝛼1 −𝛼3, 𝛽1 −𝛽3) and
the C-terminal domain (𝛼4 − 𝛼9) [see Fig. 5.2] each form distinct diago-
nal blocks, indicating strong internal correlations within these relatively
rigid subparts of the protein. The presence of off-diagonal blocks hints
at further correlated motions between both two domains.

Finally, two secondary structures stand out by exhibiting notably distinct
correlation behavior: the 𝛼4-helix, located between the two domains,
couples only weakly to the adjacent helices, effectively serving as a flex-
ible linker rather than a rigid connector. This reduced correlation stems
from its limited polar interactions with neighboring helices. Similarly,
the solvent-exposed 𝛼10-helix at the C-terminus correlates weakly with
the protein core.

5.2.2 NMI Differences Demonstrate Allosteric
Pathways

In addition to a structural characterization of the NMI matrix, we wish
to relate it to the process of allosteric transition. To this end, we analyze
how correlation patterns change between the two conformational states
of T4L. By computing the difference in the NMI between the closed and
open state

Δ𝐼N = 𝐼closedN − 𝐼openN ,

we can pinpoint which residues and secondary structures are most af-
fected by the transition, potentially revealing the communication net-
work that mediates the structural change itself. The absolute differences
∣Δ𝐼N∣ are shown in Fig. 5.9 b and exhibit a general decrease of the NMI in
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Figure 5.9 | (a) NMI 𝐼N and (b) ∣Δ𝐼N ∣ =
∣𝐼closedN − 𝐼openN ∣ computed from Cartesian
C𝛼-atom coordinates of the 50 𝜇s MD
trajectory. The colorbar covers values
between the 5th and the 95th percentile
of the respective matrix.
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the closed state (i.e. Δ𝐼N < 0; not shown) throughout the protein, except
the 𝛼4-helix separating the N- and C-domain.

Strong correlations typically arise when two residues rigidly couple and
move in a coordinated fashion, while weaker correlations indicate amore
flexible connection. The decrease in correlations in the closed state,
therefore, indicates that the open state exhibits enhanced coordinated
motion between different residues. This interpretation aligns with a root-
mean-square-fluctuations analysis (SI, Fig. C.9), which shows increased
fluctuations of the residues in the open conformation. Notably, the he-
lices 𝛼4 and 𝛼10 maintain similar dynamics across both conformations,
effectively serving as structural anchors that remain largely unaffected
by the allosteric transition.

Figure 5.10 | Structural representation
of the residue interaction network of
T4L, focusing on the most relevant
changes in the NMI (Δ𝐼N ≥ 0.06).
The edge width indicates the average
Δ𝐼N between two secondary structures.
Adapted with minor changes from Ref. 3.
Copyright © (2024) Authors.

To facilitate the interpretation of ∣Δ𝐼N∣, we illustrate the most important
interactions (i.e. ∣Δ𝐼N∣ ≥ 0.06) in a network representation in Fig. 5.10.
This network reveals the 𝛼1-helix as the primary hub for the allosteric
transition between open and closed. Nearly all significant correlation
differences involve this 𝛼-helix, which we already identified as the main
mechanistic driver of the allosteric transition relying only on contact dis-
tances. Weighted by the average ∣Δ𝐼N∣ between secondary structures, the
edges in the network describe the allosteric communication pathways
that enable long-range coupling between the mouth and hinge region.

Centrality-Driven Identification of Allosteric Hubs

As a similar but maybe more systematic approach, we suggest analyz-
ing the importance of individual residues in Cartesian similarity matri-
ces through centrality analysis.304 The fundamental premise here, con-
sistent with the idea of MoSAIC,1 is that the importance of a residue is
determined by its correlations with other influential residues rather than
simply by the number of its connections.

To this end, we transform the ∣Δ𝐼N∣ matrix into a weighted graph 𝐺 =
(𝑉, 𝐸), where the vertices 𝑉 represent the residues and the edges 𝐸 cor-
respond to correlation values (or ∣Δ𝐼N∣ in this case). The eigenvector
centrality304, vi score 𝜙𝑖 for residue 𝑖 is defined through the eigenvaluevi Fun fact: Google’s famous PageR-

ank algorithm to sort search results is
closely related to eigenvector centrality.
Just as we identify important residues
through their connections to other im-
portant residues, PageRank identifies im-
portant webpages through links from
other important pages.305

problem

𝑨𝝓 = 𝜆𝝓,

where 𝑨 represents the adjacencymatrixwith elements 𝑎𝑖,𝑗 = 1 if residues
𝑖 and 𝑗 are connected, and 𝑎𝑖,𝑗 = 0 otherwise.

At the start, every residue is assumed to be equally important (or central).
The centrality score of a residue is subsequently iteratively updated, fol-
lowing

𝜙𝑡+1
𝑖 = ∑

𝑗∈𝑉
𝑎𝑖,𝑗𝜙𝑡

𝑗 .

This process propagates centrality across the graph, meaning that residues
that are connected to highly central residues will receive higher cen-
tralities. According to the Perron-Frobenius theorem, the eigenvector
corresponding to the largest eigenvalue 𝜆 provides the final centrality
ranking.
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Fig. 5.11 a shows the 15 most (eigenvector) central residues for the ∣Δ𝐼N∣
matrix. As expected from previous analysis, the most central residue is
Phe4, confirming its crucial role also in the description based on Carte-
sian C𝛼 coordinates. Apart from Phe4, we also identified several other
residues that were found to be essential in the allosteric transition, such
as Glu5, Leu7, and Glu11.2

Figure 5.11 | Eigenvector centrality
analysis reveals key residue Phe4. (a)
Network representation of the 15 most
central residues (according to eigenvec-
tor centrality based on ∣Δ𝐼N ∣). (b) Three-
dimensional structure of T4L, where
each residue is colored according to its
eigenvector centrality score.

5.3 Some More Technical Remarks on
Cartesian Similarity Measures

In this section, we cover some more technical aspects of multidimen-
sional similarity measures that are not directly related to the functional
dynamics of T4L.

5.3.1 Translational and Rotational Alignment

In the first step, we must remove the translational and rotational motion
from the MD trajectory since this coordinate system is not invariant un-
der rotations and translations. When removing rotational motion from
MD trajectories, the alignment procedure relies on the molecule’s mo-
ment of inertia tensor, which depends on the mass distribution of the
protein. For rigid systems, the removal of the roto-translational part of
the dynamics is therefore straightforward but less so for flexible systems,
such as proteins, as large conformational changes involve a substantial
change in the mass distribution. This has the consequence that the ref-

Figure 5.12 | Comparison of local ver-
sus global fitting procedures for T4L.
Joint probability distribution of the NMI
difference ∣Δ𝐼N ∣ = ∣𝐼closedN − 𝐼openN ∣ be-
tween the two alignment methods. Lo-
cal fitting uses RMSD alignment to the
minimal average RMSD structure within
each conformation (open/closed), while
global fitting aligns to the frame with
minimal average RMSD across the entire
trajectory. Adapted with minor changes
from Ref. 3. Copyright © (2024) Authors.

erence frame shifts with structural rearrangements, potentially introduc-
ing significant artifacts when computing linear correlations. Despite be-
ing scale-invariant with respect to linear coordinate transformations,229

MI also suffers from the above-mentioned problems. To assess the im-
pact of this alignment dependency, we compared two different fitting
routines: a global alignment, where both the open and closed parts of
the trajectories were aligned to the same reference structure, and a local
alignment, where the open and closed reference structures were aligned
to their respective mean structures. The analysis of both NMI (Fig. 5.12),
as well as linear correlation coefficient (SI, see Fig. C.6), revealed only
minor differences, indicating that the standard global rotational fit pro-
cedure provides adequate results to describe the functional dynamics of
T4L without introducing significant artifacts.
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5.3.2 Linear Correlation Cancellation Effect

The linear Pearson correlation coefficient defined in Eq. (4.1) is widely
used in the literature278,279,281–283 despite its known shortcomings dis-
cussed in Sec. 4.1 and e.g. Ref. 234. Therefore, comparing the above-
found results for NMI with Pearson correlation provides valuable in-
sights into the strengths and weaknesses of both approaches.

The absolute linear correlation matrix, shown in Fig. 5.13 a, differs sub-
stantially from 𝐼N in Fig. 5.9 a, exhibiting prominent patterns that are
entirely absent in the NMI matrix. Based on a simple two-particle model,
we have already illustrated the cancellation effect affecting the multidi-
mensional Pearson correlation in Sec. 4.1, where the directional compo-
nents 𝜌𝑥, 𝜌𝑦 and 𝜌𝑧 can have opposing signs that cancel each other out.
An analysis of the directional components in SI, Fig. C.7 confirms the
presence of this artifact. For example, the helices 𝛼6 and 𝛼8 exhibit large
positive correlations in the 𝑥-direction and negative correlations in the
𝑦- and 𝑧-direction, leading to a near-zero net Pearson correlation despite
strong coupling between both structures. This behavior explains the spu-
rious patterns in the Pearson correlation matrix.

As a simple remedy to avoid directional cancellation, we may instead
sum the moduli of the three components, i.e. ∣𝜌∣ = ∑𝛼∈{𝑥,𝑦,𝑧} ∣𝜌𝛼∣. The re-
sulting matrix in Fig. 5.13 b shows much better agreement with the NMI
patterns. Similarly, canonical correlation analysis (described in Sec. 4.1.1)
yields qualitatively similar results to NMI (SI, Fig. C.8), though with sys-
tematically higher values. This demonstrates that the primary differ-
ence between NMI and Pearson correlation in the multidimensional case
arises from inadequate handling of the relationships between directional
components rather than genuine nonlinear correlation effects. That be-
ing said, there still remain differences.

Figure 5.13 | Comparison between lin-
ear correlation measures for the Carte-
sian C𝛼-atom coordinates of T4L. (a)
shows the canonical correlation matrix,
while (b) shows the sum of the absolute
values of the directional components of
the linear correlation. α1 α2 α3 α4 α6 α8 α10
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5.3.3 Comparative Analysis of Similarity Measures
for Multidimensional Data

We have already discussed some analogies and differences of various
forms of multidimensional similarity measures above. Since correlation
matrices often appear visually similar in the standard heatmap repre-
sentation, we change to an alternative representation to systematically
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compare different normalization variants. By sorting the approximately
13000 residue pairs according to increasing values of the unnormalized
MI 𝐼, we can readily identify relative differences between the different
similarity measures. Fig. 5.14 compares the following five distinct nor-
malization schemes:

⋅ 𝐼gy = √1 − exp(−𝐼(𝑋, 𝑌)/3)
⋅ 𝜌C defined in Eq. (4.2)
⋅ 𝐼NaN

NM (𝑋, 𝑌) = 𝐼(𝑋, 𝑌)/max 𝐼(𝑋, 𝑌), where 𝐼𝑖𝑗 = NaN if ∣𝑖 − 𝑗∣ ≤ 4,
⋅ 𝐼N(𝑋, 𝑌) = 𝐼(𝑋, 𝑌)/√𝐻(𝑋)𝐻(𝑌),
⋅ 𝐼NM(𝑋, 𝑌) = 𝐼(𝑋, 𝑌)/max 𝐼(𝑋, 𝑌),
⋅ and 𝐼NJ = 𝐼(𝑋, 𝑌)/𝐻(𝑋, 𝑌).

𝐼N, 𝐼NM and 𝐼NJ exhibit remarkably similar behavior, starting at values of
approximately 0.06 and showing a gradual, nearly linear increase until
around ∼ 12000 before rapidly approaching unity. Consequently, ap-
proximately 90% of all values fall between 10% and 30% of their max-
imum value. In contrast, the values in the Gel’fand-Yaglom normaliza-
tion scheme [described in Eq. (3.8)] are systematically shifted to higher
values, such that the majority (say ∼ 90%) of the residue pairs show
a correlation between 0.5 and 0.8. This systematic inflation of correla-
tion values may lead to misinterpretations when analyzing the correla-
tion’s strengths. For example, when we consider residue pairs with a
modest value of 𝐼N ≈ 0.2, the Gel’fand-Yaglom normalization indicates a
much higher correlation strength of 𝐼GY ≈ 0.7. The result from CCA, 𝜌C,
exhibits similar high values but is accompanied by significant vertical
spread of the data points. These fluctuations are presumably caused by
nonlinear effects that are not described by the linear measure 𝜌C.

Therefore, wewant to focus on 𝐼N, 𝐼NM and 𝐼NJ. Our standard definition 𝐼N
follows the maximum-normalized 𝐼NM very closely and exhibits a rather
small average spread of ∼ 0.04. 𝐼NJ behaves similarly, but is shifted to
smaller values, because it is not the tightest bound in Eq. (3.4). The fact
that these three measures show such a similar behavior also implies that
the respective normalization factors 1/√𝐻(𝑋)𝐻(𝑌) and 1/𝐻(𝑋, 𝑌) are
largely constant and depend only weakly on the specific residue pair.
As we have discussed in the previous chapter [compare eqs. (4.22) and
(4.23)], this dependence is introduced only through the scaling invariant
𝑘-nn radius ̃𝜖, which apparently is quite similar for most residue pairs in
a densely packed protein like T4L.

While the close agreement between 𝐼N and 𝐼NM initially appears to vali-
date both approaches, we find that the entropy-based normalization 𝐼N

Figure 5.14 | Comparison of various
similarity measures, displayed in the or-
der of increasing values of the unnor-
malized MI 𝐼(𝑋, 𝑌) of all residue pairs.
Adapted with minor changes from Ref. 3.
Copyright © (2024) Authors.
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remains preferable for the following reason: normalization through the
maximum value 𝐼NM requires the existence of at least one perfectly corre-
lated data point (i.e. 𝐼NM ≈ 1) in order to provide a meaningful reference.
This is given for proteins, as neighboring residues feature strong spatial
correlation due to direct links via the rigid backbone but is generally not
guaranteed for other systems. In order to investigate this more closely,
we excluded MI values between residue 𝑖 and its four nearest neighbors,
effectively removing the characteristic broad bands discussed earlier. In
this case, the maximum value of this modified MI matrix is no longer
associated with highly correlated motion, and the close agreement be-
tween 𝐼N and the newly maximum-normalized MI matrix 𝐼NaN

NM is lost (see
Fig. 5.14). This fundamental dependence on the characteristics of the
data demonstrates why our entropy-based NMI estimator 𝐼N is a more
robust and theoretically sound approach. Unlike the maximum normal-
ization, it does not require specific reference correlations and instead pro-
vides a mathematically consistent normalization that is applicable across
diverse datasets and correlation structures.

5.4 Concluding Remarks

In this chapter, we demonstrated how the combination of contact-based
and coordinate-based correlation analysis can provide detailed insights
into the complex molecular machinery of proteins. More specifically, by
thoroughly investigating the allosteric transition of T4 lysozyme (T4L),
we showed how local perturbations in the hinge region propagate to dis-
tant sites through cooperative conformational changes.

The initial two-dimensional model relying on the opening coordinate
𝑥 and the locking coordinate 𝑝 revealed the two-state behavior and in-
dicated a preferred transition path. Nevertheless, the resulting maxi-
mum free energy barrier of approximately 6 𝑘b𝑇 was too low to explain
the observed long waiting times in the order of microseconds, suggest-
ing a missing element in the description of the system. Further anal-
ysis of all contact distances and all relevant side-chain dihedral angles
via MoSAIC revealed that only 34 of the total 687 input coordinates de-
scribe the open↔closed transition in a highly correlated fashion. Specif-
ically, the 𝛼1-helix, and even more concretely, its constituent Phe4, were
identified as the main hub in this cooperative network of coordinates.
Focusing on a subset of coordinates that are particularly suited for a
mechanistic analysis, we identified six essential coordinates that are re-
sponsible for direct mechanical coupling between the distant hinge and
mouth regions, effectively describing a fluctuating transmission network.
Employing these coordinates to construct a six-dimensional free energy
landscape and following the time evolution of the free energy during
different transitions, we found that the energy barriers significantly in-
creased to ∼ (12−18) 𝑘b𝑇, much higher than the 6 𝑘b𝑇 barrier in the initial
model. These substantially increased barriers represent a much more re-
alistic explanation of the observed microsecond waiting times and high-
light the cooperative nature of the allosteric transition—where multiple
coordinates must align by chance within a narrow temporal window of
approximately 10ns.
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Aiming for a complementary global perspective on the allosteric mech-
anism, we applied the normalized mutual information (NMI) estimator,
developed in chapter 4, to the Cartesian C𝛼-atom positions of T4L. While
the MoSAIC analysis revealed the mechanistic details of the transition,
the NMI analysis captured global correlated patterns and changes in the
rigidity accompanying the transition. The NMImatrix can be interpreted
as a residue interaction network, describing how different parts of the
protein are affected by the allosteric transition. A detailed analysis of
this network by means of eigenvector centrality confirmed the central
role of the 𝛼1-helix and particularly of the Phe4 residue.

Beyond the specific case of T4L, we demonstrated how our NMI ap-
proach overcomes the limitations of linear correlation measures in mul-
tidimensional spaces by providing robust and interpretable results. The
suggested entropy-based normalization scheme can be applied indepen-
dently of the system and of the correlation structure of the data, making
this a versatile tool not only for the analysis of MD simulation data.
From a computational perspective, the scalability of the NMI estimator
[empirically 𝒪(𝑁 log𝑁)] allowed for the analysis of the entire 50 𝜇s MD
trajectory of T4L without prohibitive computational costs, showing the
perspective to analyze longer timescales and larger protein systems in
the future.
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Parts of this chapter are based on our publication:

Recovering Hidden Degrees of Freedom Using
Gaussian Processes
G. Diez, N. Dethloff, and G. Stock, J. Chem. Phys. 2025 (163) 124105,
doi: https://doi.org/10.1063/5.0282147.

Do you want the wrong answer to the right question or
the right answer to the wrong question?

– David Blei

This chapter explores advanced machine learning techniques for the
construction of physically more meaningful and temporally coherent
free energy landscapes of protein dynamics. Traditional feature extrac-
tion methods, such as principal component analysis and classical au-
toencoders, while powerful, often fail to fully grasp the complex spatio-
temporal relationships inherent in molecular dynamics simulations.

We address these limitations in two main subparts of this chapter: First,
we explore graph-based representations that naturally capture the pro-
tein structure and its spatial molecular relationships. Based on this graph
representation, we then propose an autoencoder architecture leverag-
ing graph neural networks. This graph neural network autoencoder
effectively captures complex spatial relationships in protein structures
through nonlinear local operations between neighboring residues while
the graph topology simultaneously regularizes it and prevents overfit-
ting.

Secondly, we will tackle a fundamental limitation of traditional feature
extraction methods, that is, the assumption that frames in molecular dy-
namics simulations are independent and identically distributed, which
contradicts the inherent sequential nature of molecular dynamics data.
To this end, we will introduce Gaussian processes to incorporate tempo-
ral information directly into the latent representation via a variational
autoencoder framework. Through time-dependent kernel functions, par-
ticularly the Matérn kernel, our proposed model captures temporal cor-
relations between successive frames and is even able to distinguish be-
tween dynamically distinct states that appear geometrically identical.

While graph-based approaches explicitly capture the spatial relation-
ships through protein topology, Gaussian processes introduce tempo-
ral correlations into the latent space, making both approaches comple-
mentary to each other. Combining these two approaches into a unified
framework of a Gaussian process variational graph autoencoder in the
future can create a powerful tool for the analysis and exploration of

 https://doi.org/10.1063/5.0282147 
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molecular dynamics simulations. This chapter, just like Chapter 4, has a
clear focus on methodological development, establishing theoretical and
computational foundations for future applications.

6.1 Graph-Based Protein Representations

As described in the Methods part (Sec. 2.3.3), feature extraction methods,
such as PCA and AEs, can be used to reduce the dimensionality of the
data. While this has proven to be useful in countless applications con-
cerning MD data, these feature extraction techniques do not explicitly
capture the spatial relationships between the different features—namely,
which contact distances are in physical proximity and, therefore, corre-
lated.1

Researchers in computer vision are faced with similar challenges when
dealing with images, where pixels exhibit strong spatial correlations and
local patterns in the image are crucial for, e.g., object recognition.306 In
images, this problem can be addressed by using, e.g., convolutional neu-
ral networks, that apply convolutional filters that are capable of captur-
ing local patterns in the data.307,308 Such convolutional architectures are
applicable due to the regular grid structure of images, where every pixel
has a well-defined set of spatial neighboring pixels.i While exploitingi Usually, this is referred to as inductive

biases. In principle, a simple multilayer
feedforward network serves as a univer-
sal function approximator and can learn
local patterns in images.309 Nevertheless,
such a network would be extremely in-
efficient in this case because it would
first have to learn the concept of spatial-
ity that convolutional neural networks
already have built-in by design.

the spatial structure of images makes these models much more powerful
compared to fully connected networks, transferring this idea to proteins
is not straightforward. Unlike images, proteins lack a regular structure
of features—residues that follow shortly after each other in the sequence
may be distant in the three-dimensional structure, while residues far
apart in the sequence may be in direct physical contact through the pro-
tein fold. Similarly, when using contact distances as features, it remains
unclear how to best arrange them in such a way that convolutional fil-
ters could be applied. While one could potentially organize residues in
such a way that their (contact-) distances are spatially correlated within
the data matrix (e.g., by adapting MoSAIC), this strategy would require
computing all pairwise distances between these residues, resulting in a
quadratic number of features, which is computationally prohibitive for
larger proteins. Moreover, even if an optimal spatial arrangement could
be found, the relevant spatial relationships in proteins are inherently dy-
namic, such that the spatial arrangement may change as the protein folds
or changes conformations.

6.1.1 From Protein Structures to Graphs

Fortunately, proteins can naturally be represented as graphs, where
nodes correspond to individual residues (typically represented by their
C𝛼-atoms), and edges represent the distance between these residues.iiii Typically, the inverse of the distances

is used as edge weights so that closer
residues have a higher weight.

Edges can even be temporally removed entirely if the contact is not
formed in a given interval.

A major advantage of this representation is of computational nature: un-
like data matrices, graphs are not restricted to a regular structure. This
allows us to include only the most relevant edges, such as the edges that
correspond to contact distances, which avoids the quadratic scaling with
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regard to the number of residues. As illustrated in Fig. 6.1, this graph
representation preserves the key topological and geometric properties
of the protein structure at a given time step.

Figure 6.1 | Example of a graph rep-
resentation of a protein. Due to simplic-
ity, we chose one snapshot of HP35 and
showed its structure in (a). Exactly this
structure can be represented as a graph
in (b), where each node represents one
residue and the edges indicate a contact
formed between the residues. The nodes
are colored and sized according to their
degree.

6.1.2 Graph Neural Networks and Autoencoders

Graph neural networks (GNNs) are a special class of neural networks that
are specifically designed for graph-structured data.310,311 In contrast to
the traditional fully connected networks, GNNs do not consist of layers
that are fully connected to each other but rather operate on the graph
structure itself. This way, the model leverages the spatial structure of
the data.

Similar to in Sec. 5.2.2, we define a graph as a tuple 𝐺 = (𝑉, 𝐸),iii where iii In the case of MD trajectories, this
graph is time-dependent 𝐺𝑡 = (𝑉, 𝐸𝑡),
with 𝑡 being the time step.

𝑉 is the set of nodes and 𝐸 is the set of edges. For every time step, for
each node 𝑢 ∈ 𝑉, we define311

⋅ 𝒉(𝑘)
𝑢 ∈ ℝ𝑑 as the 𝑑−dimensional node feature vector of node 𝑢 at

layer 𝑘,
⋅ 𝒆𝑢𝑣 ∈ ℝ𝑝 as the 𝑝−dimensional edge feature vector between nodes

𝑢 and 𝑣, and
⋅ Γ(𝑢) = {𝑣 ∈ 𝑉 ∣ (𝑢, 𝑣) ∈ 𝐸} as the set of neighbors of node 𝑢.

In our case, the node feature vector 𝒉(𝑘)
𝑢 may correspond to physical

properties like, e.g., the backbone/side chain dihedral angles of residue 𝑢,
while 𝒆𝑢𝑣 corresponds to the (inverse) contact distance between residues
𝑢 and 𝑣—quantities that directly characterize the conformation of the
protein.

Figure 6.2 | Message passing mech-
anism showing node 0 receiving
messages from its neighborhood
Γ(0) = {1, 2, 3} about their node vector
𝒉1, 𝒉2, 𝒉3 via message the functions
𝜓(𝒉𝑢, 𝒉𝑣, 𝒆𝑢𝑣).

At the very heart of GNNs is the process of message passing,312 where
each node iteratively updates its node feature by exchanging information
with its neighbors. This process can be described in three steps:313

1. Message computation: Each node 𝑣 ∈ Γ(𝑢) computes a message
to node 𝑢 based on its own feature vector 𝜓 (𝒉(𝑘)

𝑢 , 𝒉(𝑘)
𝑣 , 𝒆𝑢𝑣).

2. Aggregation: Node 𝑢 collects and combines all incoming mes-
sages from its neighbors Γ(𝑢) using a permutation-invarant aggre-
gation operation ⨁, which is typically simply a sum or mean op-
eration.

3. Update: Node 𝑢 updates its feature vector using both its current
feature vector 𝒉(𝑘)

𝑢 and the aggregated messages from its neighbors

𝒉(𝑘+1)
𝑢 = 𝜙 ⎡⎢

⎣
𝒉(𝑘)

𝑢 , ⨁
𝑣∈Γ(𝑢)

𝜓 (𝒉(𝑘)
𝑢 , 𝒉(𝑘)

𝑣 , 𝒆𝑢𝑣)⎤⎥
⎦

.
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The message function 𝜓 and the update function 𝜙 are typically imple-
mented as learnable neural networks. By stacking multiple message-
passing layers, local information can propagate across spatially distant
nodes, creating a physically realistic model of how structural changes
are transported through the protein. For example, in the case of T4L, a
change in the 𝜒4 dihedral angle initiates a cooperative conformational
cascade that propagates from the hinge region to the mouth region
through a series of contact changes—precisely the kind of information
transmission that GNNs naturally capture via their message passing
framework. While traditional neural networks treat features of proteins
as independent elements in high-dimensional vector spaces—making the
identification of patterns much more difficult—GNNs are explicitly reg-
ularized by the physical structure of the protein, which allows them to
learn more efficiently and avoid overfitting.

Similarly to traditional fully connected networks, GNNs can adapt a vari-
ety of architectures, including autoencoder architectures (see Sec. 2.3.3)
that learn a low-dimensional representation while preserving the es-
sential structural elements and relationships of the graph.314 In such a
graph neural network autoencoder (GNN-AE), the graph has to be coarse-
grained into a sequence of progressively coarser graphs and finally into
a latent embedding 𝐺(0) → 𝐺(1) → 𝐺(2) → … → 𝐺(𝐿) → 𝒛. This coarse-
graining is achieved through pooling operations. Hierarchical pooling
methods, such as Self-Attention Graph Pooling,315,316 iteratively reduce
graph size by computing attention317 scores for each node and then re-
taining only the top-k% important nodes in each pooling step.iv Finally,iv Strictly speaking, these pooling op-

erations do not perform coarse-graining,
but rather a form of downsampling,
where the most important nodes are re-
tained, and the rest are discarded. How-
ever, since we combine them here with
several layers of message passing, which
transport information across the graph,
we can interpret the overall process as
some kind of coarse-graining. We ex-
plain the Self-Attention Graph Pooling
in more detail in SI, Sec. D.1

the last pooling step transforms the graph into a latent representation
𝒛 ∈ ℝ𝑑.318

For the reconstruction of the contact distances from the latent represen-
tation 𝒛 ∈ ℝ𝑑, we use a fully connected network, conditioned on these
distances that are forming a contact in the given time step. A schematic
representation of the complete network is shown in Fig. 6.3.

Graph representations of proteins and the applications of GNNs have
proven effective in various applications. For example, Jha et al.319 used
GNNs to predict the interactions between different proteins, and Smith et
al.320 used GNNs with attention mechanisms to identify druggable bind-
ing sites in proteins. Another promising approach is residue interaction
networks proposed by Franke et al.,321 which use a graph representation

Figure 6.3 | Schematic representation
of a GNN autoencoder. The graph neu-
ral network operates directly on the
graph, which encodes the protein struc-
ture (here T4L). For the decoding step,
fully connected layers are used.
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of each snapshot in an MD trajectory to compute a centrality score (see
Fig. 5.11) for each residue and subsequently employ a conventional au-
toencoder modification called encodermaps113 to represent the confor-
mation of the protein based on these centrality scores. While this ap-
proach used graph representations to encode each time step of the MD
trajectory, it ultimately relies on traditional fully connected architecture
and does not leverage the regulative power of the GNNs. In contrast
to the existing approaches, our GNN-AE framework represents a novel
combination of graph neural network autoencoders specifically designed
to encode individual time steps of MD trajectories into the latent space.

6.1.3 Application: T4L

In order to demonstrate the power of this architecture, we apply it to
the 556 C𝛼-distances between the residues identified in Fig. 5.4. Using
the C𝛼-distances instead of the contact distances captures the conforma-
tion of the backbone in more detail and will allow us to reconstruct the
overall protein structure from the latent representation. We note that we
are interested in the method development part, which is why we employ
only two-dimensional embeddings for the sake of better visualization
and comparison. For practical applications, such as, e.g., in Markov
state modeling, accurate modeling would most likely require higher-
dimensional embeddings with latent dimensions around 𝑑 ⪅ 10.78,81

As a baseline, we compare our GNN-AE model to a traditional PCA. The
PCA is applied to the same 556 C𝛼-distances, and the free energy land-
scape Δ𝐺 from the projection onto the first two principal components
are shown in Fig. 6.4 a. The PCA projection reveals two main clus-
ters separated along the first principal component, corresponding to the
open (𝑧1 ⪆ 0) and closed (𝑧1 ⪅ 0) conformation (this can, e.g., be ver-
ified by coloring the data points by the locking distance, as shown in
SI, Fig. D.3). The second principal component, 𝑧2, further separates the
open conformation into two subclusters, which can be linked to motion
within the MoSAIC cluster 4 (compare Sec. 5.1.1).322 Following the idea
of N. Dethloff in Ref. 322 to visualize transitions occurring within the
MoSAIC clusters within the latent embedding, we identified these tran-
sitions using the breakpoint analysis that we employed in Ref. 4.323,324

The detailed methodology and results are provided in SI, Sec. D.2, with
results for MoSAIC cluster 4 shown in SI, Fig. D.3. The exact architecture
that we used for the GNN-AE model, as well as training parameters, can
be found in SI, Sec. D.2.4.
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Figure 6.4 | Comparison of the two-
dimensional embeddings of the 556 C𝛼-
distances using PCA (a) and GNN-AE
(b).
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Comparing the PCA results to theGNN-AEmodel, trained byN.Dethloff,322

we observe in Fig. 6.4 b that the GNN-AE captures significantly greater
structural complexity in its latent representation. Moreover, our analysis
(SI, Sec. D.2.3) demonstrates that the additional basins in the GNN-AE
embedding are physically meaningful, with the identified free energy
basins corresponding to distinct conformation states as validated based
on the MoSAIC clustering results.

We believe that this enhanced resolution results from how information
propagates through a GNN compared to PCA. In a GNN, the features
(in our case, the C𝛼-distances)v are not independent of each other, butv The node features, i.e., the backbone

dihedral angles, had only a minor influ-
ence on the GNN-AE representation.

changes in one distance propagate locally to neighboring residues and
thus influence the distances in their physical vicinity. This makes the
GNN-AE model more susceptible to subtle changes in the protein struc-
ture, eventually resulting in a more detailed latent representation. That
being said, the GNN-AE requires the full representation of a protein
structure (or at least a fully connected subpart of it) to effectively lever-
age the spatial relationships encoded in the graph. In contrast, methods
like PCA or AE architectures operating on fully connected layers can
work on an arbitrary (sub)set of features, which might be advantageous
in cases where an extensive feature selection step was performed be-
forehand.4,101–103 Eventually, the nonlinearities in the GNN-AE may also
help to ”crunch” the information into amore compact representation, but
without proper regularization—as imposed by the graph structure—this
quickly leads to overfitting and nonphysical representations, as shown
for several different architectures in Ref. 322. Furthermore, the regular-
ization through the graph structure of the protein makes the represen-
tations learned by the GNN-AE more robust and reproducible, showing
only minor variations when trained with different hyperparameters or
smaller architectural changes.

Navigating the Latent Space

As an additional means to explore the latent space, we can exploit the
generative capabilities of the GNN-AE model and generate structures of
the proteins’ backbone along a path in the latent space. First, we need to
compute a path in the latent space that is defined by a starting point 𝒛start
and an ending point 𝒛end and respects the underlying free energy land-
scape. We recognize that this problem can be framed mathematically as
an optimal transport problem,325 which would provide a rigorous frame-
work for finding a minimal-cost mapping between two probability distri-
butions given an underlying topology (e.g., via theWasserstein distance).
However, since we are only interested in a proof of concept, we follow a
simpler approach here.

To this end, we first approximate the probability density 𝑝𝑧1,𝑧2
by con-

structing a two-dimensional histogram over the latent space coordinates.
Each histogram bin (𝑛, 𝑚) corresponds to a small region in the latent
space with average probability density 𝑝𝑧1,𝑧2

(𝑛, 𝑚). Next, we construct
an undirected graphwhere each node corresponds to a bin with non-zero
probability density 𝑝𝑧1,𝑧2

(𝑛, 𝑚) > 0. The edges connecting the nodes 𝑖
and 𝑗 carry the weight 𝑤𝑖𝑗, which is inversely proportional to the sum of
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their local densities

𝑤𝑖𝑗 = 1
𝜌𝑖 + 𝜌𝑗

,

where 𝜌𝑖 and 𝜌𝑗 represent the histogram densities at adjacent bins. This
weighting scheme effectively converts the free energy landscape into a
cost landscape, where high-density (or low free energy) regions are eas-
ier to cross, and pathways through low-density regions are penalized.
Finally, we can use Dijkstra’s algorithm326 to approximate the shortest
path between 𝑧start and 𝑧end, respecting the underlying free energy.

Building on this path, we can now generate samples along it by, e.g., ex-
tracting 𝑁 equidistant points along the path 𝒛𝑖, where 𝑖 = 1, … , 𝑁. These
generated points 𝒛𝑖 can then be fed into the decoder 𝑓D,𝝓(𝒛) [compare
Eq. (2.19)] of our trained GNN-AE model, yielding 556 reconstructed
C𝛼-distances. These C𝛼-distances are then used to generate harmonic
distance restraints for PyRosetta.327,328 Using the Rosetta Energy Func-
tion 2015,329 an energy minimization is performed, which balances the
distance restraints resulting from the GNN-AE model with physical en-
ergy terms including van der Waals interactions, hydrogen bonding, and
electrostatics to find physically realistic protein conformations along the
transition pathway. We found that this works very well for stable pro-
teins such as T4L, as demonstrated in SI, Fig. D.6, but struggles for fold-
ing proteins like HP35, where secondary structures completely fold or
unfold. Such transitions that involve significant secondary structure for-
mation or unfolding may require a more sophisticated approach than our
current restraint-based approach.

To illustrate this approach, we consider the open→closed allosteric tran-
sition of T4L andmanually define a starting and ending point in the latent
space. The resulting pathway is shown in Fig. 6.5 a, along we extracted
three points (represented by the circles) and fed them into the decoder of
the GNN-AE model, which generated the restraints for the correspond-
ing C𝛼-distances. Employing PyRosetta, we obtained the three structures
shown in Fig. 6.5 b, yielding a realistic picture of the backbone dynamics
during the transition.

Figure 6.5 | As an example, we con-
sider the open→closed transition of T4L.
We manually define a starting and end-
ing point in the latent space (a) and
calculate a pathway between these two
points. Here, we extracted three points
(represented by the circles) and fed them
into the decoder of the GNN-AE model,
which generated the corresponding C𝛼-
distances. Using PyRosetta,328 we used
these distances as restraints to gener-
ate the corresponding protein structures
shown in (b).
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6.2 Temporal Continuity vs. the i.i.d.
Assumption

While the above-suggested approach of using a GNN-AE model substan-
tially increases the resolution of the latent space compared to PCA, it
still treats each MD frame as an independent snapshot. The assumption
that each frame is independent and identically distributed (i.i.d.) plays
a crucial role in machine learning (not only for MD data) since it en-
ables batch-wise and parallelized training of neural networks. Batch-
wise training usually implies that the input data is randomly shuffled
into smaller batches, typically consisting of several tens to hundreds of
frames, which are, depending on the capabilities of the GPU, processed
in parallel. Moreover, in MD data, the random shuffling has another ad-
vantage: randomly shuffling the frames breaks the temporal correlations
between consecutive frames and thus prevents the gradient updates from
being dominated by temporally limited trends such as, e.g., metastable
state lifetimes. This is because all (randomly shuffled) mini-batches now
approximately represent the whole data distribution rather than local-
ized temporal segments, which eventually results in a more stable and
efficient training process.

So, while it is mathematically and computationally convenient, the i.i.d.
assumption (intentionally) fails to capture the temporal dependencies in
MD simulations and, thus, does not account for the time evolution of the
system, where each conformation directly depends on previous states.
In the rest of the chapter, we will demonstrate that explicitly incorporat-
ing these temporal dependencies into the latent space can significantly
improve the quality of the latent representation and even allow us to dis-
tinguish between dynamically distinct states that appear geometrically
identical due to missing degrees of freedom.

6.3 Gaussian Processes

The temporal evolution of the protein in MD simulations is inherently
sequential, meaning it is continuous and correlated. Thus, we need a
modeling framework that allows us to capture these temporal dependen-
cies explicitly.

Gaussian Processes (GPs) can do exactly this. GPs provide a flexible and
probabilistic framework for modeling functions without committing to
a fixed functional form.330 Unlike traditional regression methods, which
require the specification of a particular functional form (e.g., linear, poly-
nomial, or exponential158), GPs do not assume any specific equation to
describe the data. Instead, a GP defines a probability distribution over
functions, which are constrained only by the choice of a covariance func-
tion (or kernel) that reflects our prior beliefs about the correlation struc-
ture in the data (e.g., how strongly data points at different time steps are
correlated). Formally, we write331

𝑓 ∼ GP(𝑚, 𝑘),
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whichmeans that the function 𝑓 is distributed as a GPwithmean function
𝑚 and covariance function (or kernel) 𝑘.

Example: Radial Basis Function Kernel

To illustrate how this works in practice, we consider the simple case of
the radial basis function (RBF) kernel—or Gaussian kernel—which is de-
fined as

𝑘RBF(𝑥, 𝑥′; 𝑙) = exp⎛⎜⎜
⎝

− ‖𝑥 − 𝑥′‖ 2

2𝑙2
⎞⎟⎟
⎠

,

0 5 10
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Figure 6.6 | Five functions drawn from a
Gaussian Process with 𝑘RBF(𝑥, 𝑥′; 𝑙 = 2).
The actual function values are denoted
by the circles; solid lines only for the
sake of visualization.

where 𝑙 controls the length scale of the kernel. Intuitively, we can think
of this as how fast the correlations between subsequent function values
𝑓 (𝑥𝑖) and 𝑓 (𝑥𝑗) decay as the distance of their respective input values 𝑥𝑖 and
𝑥𝑗 increases. To generate sample functions, we first need to select a set
of input points, in this case, 𝑥𝑖 ∈ [0, 10] for 𝑖 = 1, … , 𝑁 = 30 equidistant
𝑥-values. For these input values, we then compute the covariance matrix
𝑲𝑖𝑗 = 𝑘RBF(𝑥𝑖, 𝑥𝑗; 𝑙) for all pairs of 𝑥𝑖, 𝑥𝑗. This results in a 30×30 matrix that
encodes the expected similarity between the function values at all pairs
of input points. Finally, we can now draw samples from the multivariate
Gaussian with zero mean covariance 𝑲: 𝑓 ∼ 𝒩(0, 𝑲), where each sample
is a 30-dimensional vector representing the function values at the 30 𝑥-
positions (see Fig. 6.6). Usually, the mean function 𝑚(𝑥) is set to zero for
simplicity because the main flexibility and expressiveness of GPs stem
from the kernel.331

From Prior to Posterior: Conditioning on Observations

For more practical applications, we want to condition the GP on obser-
vations, such as MD frames, in order to make predictions about function
values at unseen input points. In Bayesian terminology, this means that
we want to update our initial beliefs (i.e., the prior) in light of the data,
resulting in a posterior distribution over functions that both respect the
prior assumptions and the observed data. We denote the known func-
tion values at observed input points as 𝒇o and 𝒇p are the function values
at input points 𝒙p that we want to predict. Since we model 𝒇o and 𝒇p as
resulting from the same GP, they are jointly Gaussian distributed

⎡⎢
⎣

𝒇o
𝒇p

⎤⎥
⎦

∼ 𝒩⎛⎜
⎝

⎡⎢
⎣

𝝁o
𝝁p

⎤⎥
⎦

, ⎡⎢
⎣

𝜮oo 𝜮op
𝜮po 𝜮pp

⎤⎥
⎦

⎞⎟
⎠

,

where we use the shorthand notation 𝝁𝑘 = 𝑚(𝒙𝑘) and 𝜮𝑘𝑙 = 𝑘(𝒙𝑘, 𝒙𝑙) for
convenience (𝑘, 𝑙 ∈ {o,p}). Assuming that we want to predict the val-
ues 𝒇p at the points 𝒙p, we can obtain the posterior distribution through
conditioning on the observations

𝒇p|𝒇o ∼ 𝒩(𝝁p|o, 𝜮p|o),
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where

𝝁p|o = 𝝁p + 𝜮po𝜮−1
oo (𝒇o − 𝝁o),

= 𝜮po𝜮−1
oo 𝒇o

𝜮p|o = 𝜮pp − 𝜮po𝜮−1
oo 𝜮op,

where we assumed 𝝁k = 0 and used standard properties of conditioning
in multivariate Gaussian distributions.131 The posterior mean 𝝁p|o pro-
vides optimal predictions for the function values at the prediction points
𝒙p, while the diagonal of the posterior covariance 𝜮p|o quantifies predic-
tion uncertainty.

In case the observations 𝒇o are noisy,vi GPs can readily account for thisvi we assume additive i.i.d. Gaussian
noise. by modifying the covariance structure: since the noise is assumed to be

independent, each observation 𝑓 (𝑥) has an additional covariance with it-
self only 𝜮noise

oo = 𝜮oo + 𝜎2𝑰, where 𝜎2 is the noise variance, and 𝑰 is
the identity matrix. The remaining equations remain structurally un-
changed, with only this modified covariance matrix.

To demonstrate the effectiveness of GP regression, we drew values of
the function 𝑓 (𝑥) = sin(𝑥) + 𝑥

2 for five randomly sampled 𝑥-values in the
interval 𝑥 ∈ [− 𝜋

2 , 5𝜋
2 ] and added Gaussian noise with 𝜎2 = 0.2. Again,

we assumed the same covariance structure of 𝑘RBF(𝑥, 𝑥′; 𝑙 = 2) as above
and conditioned the GP on these five noisy observations 𝒇o. The result-
ing posterior mean 𝝁p|o and the 68% and 95% confidence intervals are
shown in Fig. 6.7. We see that the GP successfully captures the underly-
ing function despite the sparse and noisy observations—especially in the
core region around these observations. Moreover, the confidence inter-
vals become wider in regions where the GP regression can not rely on
observations, such as, e.g., for values 𝑥 < 𝜋/2.

GPs are a flexible tool for modeling sequential data, such as, e.g., MD sim-
ulations, but we note that GPs can be applied to any kind of data, which
allows the definition of a kernel that captures the underlying correlation
structure. Examples include computer vision,332 genomics andmolecular
discovery,333,334 robotics,335 climate modeling,336 and finance.337

Figure 6.7 | Gaussian process regres-
sion on five noisy realizations of 𝑓 (𝑥) =
sin  (𝑥)+ 1

2 𝑥. The confidence intervals at
a given 𝑥′-value indicate that there is a
68% and 95% probability that the func-
tion value 𝑓 (𝑥′) of any sampled func-
tion from the posterior distribution lies
within the corresponding interval.
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6.4 VAEs with GP Priors

While GPs are very effective for modeling temporal correlations directly
in the observed space, we want to use them to encode temporal correla-
tions directly into the latent space. This naturally leads us to the frame-
work of variational autoencoders (VAEs, see Sec. 2.3.3),112 which, just
like GPs, operate within a Bayesian probabilistic framework. While GPs
provide the means to model dynamics via prior beliefs about temporal
correlations, VAEs use variational inference to approximate the posterior
distribution over latent variables. As they both share the same probabilis-
tic foundation, we can seamlessly incorporate the temporal structure of
our MD data by using GPs as priors in the latent space of a VAE.

In standard VAEs, the latent variables 𝒛 are regularized through a simple
factorized (i.i.d.) Gaussian prior, that assumes independence across both
latent dimensions and time steps:

𝑝(𝒛) =
𝑁

∏
𝑖
𝒩(𝒛𝑖|0, 𝑰)

As described in Sec. 6.2, this i.i.d. assumption contradicts the sequential
nature of MD data. The rationale for replacing this factorized prior with
a GP is straightforward: introducing a GP instead of a simple i.i.d. Gaus-
sian prior enables us to embed temporal correlations directly into the la-
tent space through time-dependent kernels 𝑘(𝑡, 𝑡′). When working with
temporal kernels, the correlation decay, specified through the kernel’s
length scale 𝑙, directly translates into memory decay. Consequently, this
means that temporal correlations in the MD trajectory are expressed as
spatial proximity in the latent space: frames close in time are considered
similar—and their latent representations 𝒛 are therefore located close to
each other—while temporally distant ones exhibit weaker correlations.

6.4.1 Kernel Choice: The Matérn Kernel

The choice of a suitable kernel is crucial for embedding physically mean-
ingful constraints into our Gaussian Process Variational Autoencoder
(GP-VAE) framework, as the kernel’s characteristics and timescales di-
rectly affect the position of a data point in the latent space. Since the
dynamics of our system are Markovian in full space, we seek to preserve
a simpler Markov-like structure also within our compressed latent rep-
resentation. To this end, the Matérn kernel emerges as particularly well-
suited for this application due to its close connection to the Ornstein-
Uhlenbeck process, which was introduced as a mathematical model of
the velocity of a particle undergoing Brownian motion. The choice of
the Matérn kernel is physically motivated: it inherently captures the
continuous, yet stochastic nature of the conformational dynamics of pro-
teins. Simultaneously, it preserves the desired Markovian structure. The
Matérn kernel is given as

𝑘𝜈(𝑡, 𝑡′; 𝑙) = 21−𝜈

Γ(𝜈) (√2𝜈 ∣𝑡 − 𝑡′∣
𝑙 )

𝜈
𝐾𝜈 (√2𝜈 ∣𝑡 − 𝑡′∣

𝑙 ) , (6.1)

where 𝜈 specifies the smoothness of the kernel function, 𝑙 is the charac-
teristic length scale (i.e. memory timescale), and 𝐾𝜈 is a modified Bessel
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function and Γ(𝜈) is the Gamma function.330 Crucially, the Matérn ker-
nel allows to independently control two different aspects of memory
through the parameters 𝜈 and 𝑙. Through the smoothness parameter 𝜈,
we can directly control the structure of memory, that is, the order of the
underlying Markov process, while 𝑙 controls the rate of memory decay.

Here, we are considering three cases for 𝜈 = 1/2, 3/2, ∞:

𝑘𝜈=1/2(𝑡, 𝑡′; 𝑙) = exp(− ∣𝑡 − 𝑡′∣
𝑙 ) ,

𝑘𝜈=3/2(𝑡, 𝑡′; 𝑙) = ⎛⎜⎜
⎝

1 +
√3∣𝑡 − 𝑡′∣

𝑙
⎞⎟⎟
⎠
exp⎛⎜⎜

⎝
−

√3∣𝑡 − 𝑡′∣
𝑙

⎞⎟⎟
⎠

,

lim𝜈→∞ 𝑘𝜈(𝑡, 𝑡′; 𝑙) = exp⎛⎜⎜
⎝

− ∣𝑡 − 𝑡′∣2

2𝑙2
⎞⎟⎟
⎠

.

In the first case, where 𝜈 = 1/2, the covariance function simplifies to an
exponentially decaying memory, which we find for first-order Markov
processes, where the future state only depends on the current state. This
is also the covariance function of the Ornstein-Uhlenbeck process. For
higher half-integer values 𝜈 = 3/2, 5/2, …, theMatérn kernel corresponds
to higher-order Markov processes, e.g., for 𝜈 = 3/2, we obtain a second-
order Markov process, for 𝜈 = 5/2 a third-order and so forth. As we
employ higher 𝜈-values, the realizations become smoother, indicating
that more information about the past is retained in the memory of the
stochastic process. For 𝜈 → ∞, the Matérn kernel converges to the RBF
(Gaussian) kernel—that we discussed earlier—which corresponds to an
infinitely smooth process with no Markovianity at all.

On the other hand, large values of 𝑙 correspond to a slow decay of mem-
ory, meaning that the current state is highly predictive of future states.
Small values of 𝑙 correspond to a fast decay of memory, meaning weakly
predictive power of future states given the current state. This makes the
length scale 𝑙 a crucial parameter for capturing the relevant timescales
of protein dynamics, where different dynamics occur across vastly dif-
ferent timescales. Fast local fluctuations in the picosecond regime to
slow allosteric transitions in the microseconds to milliseconds regime:
the length scale 𝑙 must be appropriately chosen to match the dynamical
processes of interest

Fig. 6.8 illustrates the effects of both parameters. The left panels show
how different values of 𝑙 ∈ {1, 3, 10} control the width of the memory
decay, while different values of 𝜈 ∈ {1/2, 3/2, ∞} affect the shape of
memory decay. The corresponding GP realizations on the right show
how these two independent effects combine: for any fixed length scale 𝑙,
a higher 𝜈-value results in smoother trajectories, while for any given 𝜈-
value, a larger 𝑙 leads to slower variations and thus increased predictive
power of the current state.
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Figure 6.8 | Matérn kernel prop-
erties and Gaussian process realiza-
tions. Left: Kernel correlation functions
𝑘𝜈(𝑡, 𝑡0; 𝑙) for different length scales ∈
{1, 3, 10} and smoothness parameters
𝜈 ∈ {1/2, 3/2, ∞}. Right: Sample real-
izations from GP priors using the corre-
sponding Matérn kernels.

6.4.2 Changing the Objective

Let us briefly recap the core idea of a classical latent variable model. The
generative model is given as

𝑝(𝒙, 𝒛) = 𝑝(𝒙|𝒛)𝑝(𝒛), (6.2)

where the likelihood 𝑝(𝒙|𝒛) encodes how a specific latent variable 𝒛 leads
to an observation 𝒙. Hence, it acts as a ”recipe” for reconstructing the pro-
tein’s full conformation 𝒙 given the latent representation (or collective
variable) 𝒛. As described in Sec. 2.3.3, this leads to the ELBO objective
function of a VAE, which is given as

ln 𝑝(𝒙) ≥ ℒ𝜽,𝝓 = ⟨ ln 𝑝(𝒙|𝒛)⟩𝒛∼𝑞(𝒛|𝒙)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Reconstruction

− 𝐷kl [𝑞(𝒛|𝒙) ∥ 𝑝(𝒛)]⏟⏟⏟⏟⏟⏟⏟⏟⏟
Regularization

.

However, nowwewant to replace the factorized prior 𝑝(𝒛) = ∏𝑁
𝑖=1 𝒩(𝒛𝑖|0, 𝑰)

with a GP that explicitly captures the temporal correlations through the
time-dependent kernel 𝑘(𝑡, 𝑡′). This modification transforms the genera-
tive model in Eq. (6.2) to

𝑝(𝒙, 𝒛|𝑡) = 𝑝(𝒙|𝒛)𝑝(𝒛|𝑡). (6.3)

The crucial difference lies in the temporal conditional of the prior 𝑝(𝒛|𝑡),
where the latent variables now follow aGaussian Process: 𝒛 ∼ GP[0, 𝑘𝜈(𝑡, 𝑡′)].
This modifies the standard VAE ELBO objective function to

ℒ = ⟨ ln 𝑝(𝒙|𝒛)⟩𝒛∼𝑞(𝒛|𝒙) − 𝛽𝐷kl [𝑞(𝒛|𝒙, 𝑡) ∥ 𝑝(𝒛|𝑡)] , (6.4)

where we compare the temporally-aware posterior distribution 𝑞(𝒛|𝒙, 𝑡)
against the GP prior 𝑝(𝒛|𝑡). Similarly to the 𝛽-VAE,338 we also introduce
a weighting factor 𝛽 to control the impact of the regularization term on
the overall objective.

However, this apparent straightforward conceptual modification intro-
duces significant computational challenges that distinguish GP-VAEs



94 6 Physics-Informed Latent Space Models: From Graphs to Gaussian Processes

from standard VAEs. For large data sets, such as MD simulations, where
we are often faced with 105 − 106 frames, the 𝒪(𝑁3) computational com-
plexity of the GP prior becomes computationally prohibitive.vii More-vii Computing the full kernel matrix

𝑲𝑁𝑁 ∈ ℝ𝑁×𝑁 , for all 𝑁 data points
requires 𝒪(𝑁2) operations, and its in-
version leads to the cubic complexity
𝒪(𝑁3).

over, unlike standard VAEs that can be trained in batches, GP-VAEs
require the full trajectory at once during training because all frames are
temporally connected through the kernel matrix.

In order to overcome these computational bottlenecks, several key con-
tributions of different authors have led to the development of sparse GP
methods that 1.) scale to very large datasets339,340 and 2.) allow the inte-
gration of these sparse GP techniques into the VAE framework.133,332,341

These methods use inducing points to approximate the full GP prior and
variational inference techniques to reduce the computational complexity
from 𝒪(𝑁3) to 𝒪(𝐵𝑀2 + 𝑀3), where 𝑀 is the number of inducing points
and 𝐵 denotes the batch size.133 The resulting sparse GP-VAE objective
function is given as

ℒGP-VAE = ⟨ln 𝑝(𝒙|𝒛)⟩𝒛∼𝑞(𝒛|𝒙)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Reconstruction

−𝛽 [CE [𝒩(𝒎, 𝑩)‖𝒩( ̃𝝁, 𝝈̃2)] −

sparse
⏞𝑏
𝑁ℒH ]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

GP regularization

.

(6.5)

TheGP posterior 𝑞(𝒛|𝒙, 𝑡) = 𝒩(𝒎, 𝑩) captures temporal structures through
itsmean 𝒎 and posterior covariancematrix 𝑩. This is in contrast with the
standard factorized VAE posterior 𝑞(𝒛|𝒙) = 𝒩( ̃𝝁, 𝝈̃2), which treats each
time step independently through its diagonal covariance structure. Both
posteriors are brought together and combined through the cross-entropy
(CE), which regularizes the encoder to maintain consistency with the
temporal correlations induced by the Matérn kernel. Additionally, the
sparse approximation term 𝑏/𝑁ℒH covers terms resulting from the intro-
duction of inducing points, which are crucial to enable the scaling of this
framework to large datasets.340 The complete mathematical derivation
of Eq. (6.5), including the recipes to compute all required quantities, can
be found in SI, Sec. D.3.

6.4.3 Proof of Concept: Toy Model

Having established the theoretical foundation of GPs and their suitabil-
ity for modeling temporal correlations in the latent space—especially us-
ing the Matérn kernel—we now demonstrate the practical application
of our GP-VAE framework. We aim to isolate and study the effects of
non-Markovian behavior that arise when important degrees of freedom
are missing in the input data. Such scenarios commonly occur when an-
alyzing MD simulations by means of dimensionality reduction, either
through suboptimal feature selection or insufficient latent representa-
tions, which can introduce memory effects that violate the Markov as-
sumption. By constructing an analytical toy potential, where we can
systematically introduce non-Markovian effects through projection arti-
facts, we can rigorously study the ability of our framework to recover
these hidden degrees of freedom.
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To this end, we simulate a three-dimensional trajectory 𝒙𝑡 using the over-
damped Langevin equation

𝒙𝑡+1 = 𝒙𝑡 − Δ𝑡
𝛾 ∇Φ(𝑥, 𝑦, 𝑧) + √ 2𝑘b𝑇Δ𝑡

𝛾 𝝃𝑡,

where 𝛾 denotes the friction constant and 𝝃𝑡 represents Gaussian white
noise drawn from a normal distribution with zero mean and unit vari-
ance. The potential Φ(𝑥, 𝑦, 𝑧) that we used in our simulations is given
by

Φ = −11.5 [e−𝑥2−(𝑦+1.2)2−(𝑧+1.2)2 + e−𝑥2−(𝑦−1.2)2−(𝑧−1.2)2 ]

− 17 [e−(𝑥+1.8)2−(𝑦+0.12)2−(𝑧+2.5)2 + e−(𝑥+1.8)2−(𝑦−0.12)2−(𝑧−2.5)2 ]

+ 𝑥2 + 𝑦2 + 𝑧2. (6.6)

It is designed to feature well-separated basins, which we denote as states
1-4. Simulating a trajectory for 106 time steps, we obtain the three-
dimensional trajectory, whose time trace is shown in Fig. 6.9. Looking
at the three-dimensional trajectory representation in Fig. 6.11 a, we can
see that states 2 and 3 are dynamically separated in all three dimensions,
while states 3 and 4 are only distinguishable along the 𝑧-axis, with al-
most identical 𝑥- and 𝑦-coordinates. This can readily be verified in the
two-dimensional projection onto the 𝑥𝑦-plane in Fig. 6.11 b. However,
dynamically, states 3 and 4 are well separated since a direct transition
from state 4 to 3 is not possible and must pass through states 2 and 1, i.e.,
4 → 2 → 1 → 3.

The original three-dimensional system exhibits Markovian dynamics be-
cause we used a Markovian Langevin equation to simulate the trajectory.
Upon dimensionality reduction to the 𝑥𝑦-plane, however, the dynami-
cally distinct states 3 and 4 become spatially superimposed (indicated by
the new combined state 3+4), which breaks the Markovian property in
this lower dimensional representation. The loss of Markovianity arises
because the transition probabilities become path-dependent in the two-
dimensional projection. Specifically, the conditional transition probabil-
ity 𝑝(𝑖|𝑗 = 3+4) is no longer solely determined by the current state 3+4
but depends on whether state 3+4 was entered via state 1 or state 2—
violating the Markov property, which requires that the future state of

Figure 6.9 | Time trace obtained from
a Langevin simulation of the potential
Φ(𝑥, 𝑦, 𝑧) defined in Eq. (6.6). We sim-
ulated 106 time steps with a time step
size of Δ = 5 ⋅ 10−3, a friction coeffi-
cient of 𝛾 = 1 and a temperature of
𝑇 = 1 (in dimensions-less units). The
solid line represents the Gaussian fil-
tered time trace. Adapted with minor
changes from Ref. 4.
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the system only depends on its current state. Consequently, this path
dependence renders traditional Markov State Models (MSMs) unsuitable
for modeling the dynamics.

By design, this two-dimensional 𝑥𝑦-projection of the three-dimensional
dynamics serves as the perfect test case for our GP-VAE framework. In
the first step, we used a change point detection algorithm to extract
𝑚 = 89 representative frames from the trajectory using solely informa-
tion from the 𝑥𝑦-coordinates. (for details, see SI, Sec. D.2 and SI, Fig. D.2).
Leveraging both spatial data exclusively from the 𝑥𝑦-plane and temporal
information, we trained our GP-VAE model using the parameters spec-
ified in SI, Sec. D.4. Fig. 6.11 c shows the resulting two-dimensional la-
tent representation demonstrating that the GP-VAE is indeed capable of
separating the overlapping state 3+4 into its two dynamically distinct
substates.

Figure 6.10 | Sankey diagram show-
ing state correspondence across the orig-
inal 3D data (left), GP-VAE latent embed-
ding (center), and 𝑥𝑦-plane projection
(right). Bandwidths indicate the fraction
of frames where corresponding states
temporally coincide. Adapted with mi-
nor changes from Ref. 4.

To facilitate better comparison, Fig. 6.10 displays a Sankey diagram that
illustrates state correspondence between the states in the full, three-
dimensional space and in the reduced two-dimensional 𝑥𝑦-projection
with the GP-VAE latent representation in the middle. Only minor de-
viations are notable, mostly for state 1, which are likely to result from
dynamical coring124 that we performed prior to the construction of the
MSM for further analysis.

To this end, we employed 𝑘-means clustering with 𝑘 = 1000 to achieve a
fine state partition in all three representations. To coarse-grain this par-
tition, we used MPP lumping121 and (iterative) dynamical coring with a
lag and coring time of 𝜏lag = 𝜏coring = 10 frames. We then computed tran-
sition matrices 𝑻(𝜏) for each of the three MSMs and calculated the cor-
responding implied timescales using 𝑡𝑖(𝜏) = −𝜏/ ln(𝜆𝑖), where 𝜆𝑖 repre-
sents the eigenvalues associatedwith eigenvector 𝜈𝑖 of 𝑻(𝜏). The implied
timescales are shown in Fig. 6.11 d-f, and the corresponding eigenvector
contributions in g-i. Notably, both the full three-dimensional MSM and
the GP-VAE embedding MSM converge to identical implied timescale
values at large 𝜏lag-balues. However, the GP-VAE embedding demon-
strates significantly faster convergence, which we attribute to the inher-
ent Markovian structure enforced by the Matérn kernel used in our GP-
VAE framework. As mentioned earlier, temporal correlations in the tra-
jectory are encoded as spatial proximity in the latent space, which is why
the GP regression in the latent space effectively acts as a time-aware fil-
tering that filters out non-Markovian noise components. Consequently,
the microstates exhibit significantly increased metastability because the
rapid, noise-driven fluctuations are suppressed. This increased metasta-
bility accelerates the memory decay in the system and therefore facili-
tates the construction of MSMs with shorter lag times, yielding better
resolved models. For our toy model specifically, this improvement is
clearly demonstrated in the dendrograms illustrating the metastability
of the microstates during hierarchical lumping towards macrostates; see
SI, Fig. D.7.

We further evaluate the quality of the latent embedding of our model
by comparing the eigenvectors of the MSMs constructed in three dimen-
sions and in the two-dimensional space from the GP-VAE. Despite re-
lying solely on limited information about the dynamics of the system
through the 𝑥𝑦-plane projection, the GP-VAE accurately recovers the
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Figure 6.11 | (a) The three-dimensional visualization of the simulated trajectory displays four distinct metastable basins, with states
labeled 1 (blue), 2 (cyan), 3 (yellow), and 4 (red), where contour lines projected onto the 𝑥𝑦-plane illustrates the relative potential depth.
When projected onto the two-dimensional 𝑥𝑦-plane (b), states 3 and 4 overlap spatially, rendering them indistinguishable using positional
coordinates alone. (c) The GP-VAE successfully separates the originally overlapping states 3 and 4 by incorporating temporal information
alongside the 𝑥𝑦-plane coordinates, thereby reconstructing the underlying Markovian dynamics. The bottom panels (d-i) present the
results from MSM analysis for each of the three scenarios (column-wise) depicted above, showing the implied timescales (d-f) and
corresponding eigenvector contributions (g-i) for each case. Reprinted from Ref. 4.

system’s dynamic structure. So, for instance, the equilibrium state pop-
ulations, shown as 𝜇, precisely match those of the three-dimensional
MSM, suggesting that the GP prior preserves the underlying thermody-
namic properties. Moreover, the first eigenvector 𝜈1, which characterizes
the slowest dynamical process in the system, shows close agreement be-
tween both representations. This demonstrates the GP-VAE’s capability
to identify dominant transition pathways even when the corresponding
states are geometrically indistinguishable. The higher-order eigenvec-
tors 𝜈2 and 𝜈3 maintain reasonable qualitative agreement, with expected
deviations given the missing information in the 𝑧-dimension.

To summarize, our GP-VAE framework demonstrates the remarkable
ability to extract meaningful collective variables even when input data
lack essential geometric information due to flawed dimensionality re-
duction steps. Beyond accurately reconstructing the correct state as-
signment from incomplete spatial information, our approach also ac-
celerates the convergence of implied timescales in MSM analysis. This
improved performance is due to two key intertwined factors: the mathe-
matical framework of Markovian kernels—such as the employed Matérn
kernel—naturally enforces Markovian properties in the latent represen-
tation. Secondly, the GP regression operates as a temporal filtering, sys-
tematically removing non-Markovian noise components. The synergy
between these two aspects enhances MSM construction and can help to



98 6 Physics-Informed Latent Space Models: From Graphs to Gaussian Processes

disentangle distinct dynamical processes, even when they are geometri-
cally indistinguishable.

6.4.4 Software

We implemented the GP-VAE framework using PyTorch,10 and it is
freely available for public use at https://github.com/moldyn/GP-
TEMPEST

6.5 Concluding Remarks

We have introduced two advanced physics-informed machine learning
frameworks created to obtain more interpretable and dynamically coher-
ent latent representations from molecular dynamics (MD) simulations.
Both methods are complementary and address two different drawbacks
of common feature extraction methods used in MD simulations:

1. While nonlinear feature extraction techniques are more power-
ful than linear methods at capturing complex relationships in the
data,113–115,342 they typically lack explicit physical regularization
through their architectural design. This absence of physical con-
straints in these neural networks often results in latent representa-
tions that are not meaningful from a physical perspective, e.g. be-
cause the latent representation exhibits completely disconnected
regions.322 This may not come as a surprise, since these meth-
ods operate in vastly high-dimensional feature spaces that offer
excessive flexibility, effectively allowing the models to fit arbi-
trary patterns potentially preventing them from learning physi-
cally compact and meaningful representations. Furthermore, this
unrestricted flexibility makes these models also notoriously diffi-
cult to train, and small changes in hyperparameters might lead to
drastically different results,322 meaning that results are often not
robust and reproducible.

2. The great majority of all feature extraction methods, with a few
notable exceptions,107,134 rely on the assumption that the data is in-
dependent and identically (i.i.d.) distributed. This assumption fun-
damentally contradicts the sequential nature of MD simulations,
where each frame directly depends on the previous one through
the Newtonian equations of motion.

Graph Neural Network Autoencoder

In the first part of this chapter, we tackled the first issue by introduc-
ing graph-based representations that explicitly capture the underlying
physicochemical structure of the protein conformation at each time step
in the trajectory. These graph representations naturally encode the spa-
tial relationships between the different residues in the protein.

Based on this foundation, we developed a graph neural network autoen-
coder that operates directly on these graph representations and learns

https://github.com/moldyn/GP-TEMPEST
https://github.com/moldyn/GP-TEMPEST
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a low-dimensional latent representation. Regularized by the underly-
ing graph structure of the protein, this model leverages powerful lo-
cal and nonlinear operations—including message passing and attention
mechanisms—while avoiding the overfitting issues that plague common
nonlinear feature extraction methods. The local propagation of infor-
mation in a graph neural network forces the model to obey to physical
principles like the local propagation of conformational changes.

Our application to T4 lysozyme proves the effectiveness of this approach:
the resulting two-dimensional free energy landscape reveals significantly
enhanced structural complexity compared to the principal component
analysis. Crucially, validation of the additional energy basins revealed
that these are indeed physically meaningful and correspond to genuine
conformational states rather than being spurious artifacts resulting from
nonlinearity. Furthermore, we demonstrated the generative capabilities
of this model by suggesting a routine to generate realistic protein back-
bone structures along pathways in the latent space. Navigating the free
energy landscape by using the generative capabilities of the graph neu-
ral network autoencoder can help to systematically explore dominant
conformational transition pathways and investigate how the protein’s
structure changes with respect to different regions in the free energy
landscape. However, as the side chain dynamics are not included in the
model, a detailed analysis of the underlying mechanisms in terms of con-
tact formation or breaking is still indispensable for a detailed physical
interpretation of a conformational change.

Gaussian Process Variational Autoencoder

In the second part of this chapter, we addressed the fundamental limita-
tion posed by the i.i.d. assumption in common feature extraction meth-
ods for molecular dynamics simulations. To this end, we explored the
use of Gaussian processes to explicitly model temporal dependencies
in molecular dynamics simulations. Their kernel-based approach pro-
vides direct control over temporal correlation structures, and their prob-
abilistic foundation enables seamless integrationwith variational autoen-
coders.

Central to our approach is the use of Markovian kernel functions, partic-
ularly the Matérn kernel, which imposes the preservation of Markovian
properties during dimensionality reduction. This renders the resulting
embedding a perfect starting point for further dynamical analysis, such
as Markov state models. We demonstrate the effectiveness of our frame-
work with a carefully designed analytical toy model that systematically
introduces non-Markovian behavior through deliberate projection arti-
facts. In this controlled test case, we challenged the Gaussian process
variational autoencoder by relying solely on incomplete spatial informa-
tion from a two-dimensional projection in which two dynamically dis-
tinct states appear spatially indistinguishable. Despite the essential de-
gree of freedom being hidden, the Gaussian process variational autoen-
coder successfully recovered the correct state assignments by leveraging
temporal information from the trajectory.

Crucially, our approach provides significant advantages for the subse-
quent dynamical analysis by enabling Markov state model construction
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with substantially faster convergence of implied timescales, and conse-
quently, shorter lag times. This improvement is due to the inherent
Markovian structure imposed by the Matérn kernel Gaussian process
prior, acting as a time-aware filter that systematically removes non-
Markovian noise components while preserving the essential dynamical
structure. The resulting microstates in the latent representation exhibit
increased metastability, accelerating memory decay and thus facilitating
more efficient construction of Markov state models.

While this toy model represents an idealized scenario, it demonstrates
the great potential of incorporating temporal information into dimen-
sionality reduction frameworks for sequential data, such as coming from
molecular dynamics simulations. This time-aware perspective extends
purely geometric approaches and offers new insights into the dynam-
ics of complex biomolecular systems where conventional collective vari-
ables may miss the complete picture of the dynamics. The frameworks’
capability of recovering hidden degrees of freedom through temporal
correlations opens new avenues for modeling complex biomolecular sys-
tems where essential degrees of freedom are hidden from projection ar-
tifacts or incomplete feature selection.

Moving Forward

The two approaches presented in this chapter—graph neural network for
physically meaningful spatial regularization and Gaussian processes for
temporal coherence—are complementary and can be straightforwardly
combined into a powerful, unified framework. Such a Gaussian process
variational graph autoencoder would simultaneously leverage protein
topology and temporal dependencies to create robust and physically in-
formed latent representations.

In a larger context, most of the classical feature extraction methods, in-
cluding principal component analysis, time-lagged independent compo-
nent analysis as well as various autoencoder architectures, implicitly op-
erate within a covariance or correlation framework. Whether consider-
ing instantaneous covariance matrices in principal component analysis
or time-lagged covariance matrices in time-lagged independent compo-
nent analysis, these methods are fundamentally unable to capture asym-
metric temporal relationships or directional dependencies that are re-
quired to characterize causal mechanisms. The Gaussian process frame-
work suggested here, while demonstrated using only stationary kernels,
can be extended to non-stationary kernels that break the time-reversal
symmetry. Kernels of the formviiiviii Similarly, the kernel hyperparam-

eters can be made time-dependent, i.e.
𝑘(𝑡, 𝑡′; 𝑙) = 𝑘 [𝑡, 𝑡′; 𝑙(𝑡, 𝑡′)]. 𝑘(𝑡, 𝑡′) = 𝑘stationary (∣𝑡 − 𝑡′∣) ⋅ 𝑘causal (𝑡, 𝑡′) ,

where 𝑘causal(𝑡, 𝑡′) explicitly depends on the absolute time positions rather
than their difference, introduce time asymmetry which might be use-
ful to capture temporal directional dependencies. Employing such non-
stationary kernels in the Gaussian process variational autoencoder or in
the unified framework could potentially further strengthen the model’s
ability to find low-dimensional representations of molecular dynamics
simulations by capturing not only temporal correlations but also explic-
itly causal relationships. This is particularly relevant in the context of
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allosteric transitions, where the directionality of changes is crucial for
understanding the underlying molecular machinery.





Conclusion and Outlook 7
Der Mensch ist zu einer beschränkten Lage geboren. Einfache,
nahe, bestimmte Zwecke vermag er einzusehen, und er gewöhnt
sich, die Mittel zu benutzen, die ihm gleich zur Hand sind. Sobald
er aber ins Weite kommt, weiß er weder, was er will, noch was er
soll.

– Johann Wolfgang von Goethe (Wilhelm Meisters Lehrjahre)

As integral components of every living organism, proteins orchestrate
the fundamental processes that sustain life through their remarkable abil-
ity to dynamically transition between various conformational states. Un-
derstanding thesemolecularmachines through their dynamical behavior—
that spans timescales from picoseconds to seconds—represents one of the
grand challenges of theoretical biophysics.

Through remarkable progress in computational power and algorithmic
developments—in both simulation and analysis—over recent decades,
molecular dynamics simulations have emerged as a transformative tool
to study the molecular machinery underlying protein function. By pro-
viding spatio-temporal trajectories of protein folding, conformational
changes, and interactions at an atomistic scale, molecular dynamics sim-
ulations shed light on molecular mechanisms that remain challenging
to observe experimentally. Modern molecular dynamics simulations
routinely generate terabytes of trajectory data spanning the motion
of millions of atomic coordinates across microseconds to milliseconds
timescales, and yet their effective dynamics are often described by only
a small fraction of these degrees of freedom. This dimensionality reduc-
tion challenge motivates the central question of this thesis: How can we
extract meaningful information from this overwhelming wealth of high-
dimensional data?

Contributions

Roughly, the contributions of this thesis can be categorized into two parts
of methodological advances, both of which share the common ground of
similarity: First, we developed correlation-based approaches (MoSAIC
and a nonparametric normalized mutual information estimator) that
identify functional relationships between dynamical observables. Sec-
ond, we introduced physics-informed feature extraction methods (graph
neural network autoencoders and Gaussian processes variational autoen-
coders) that result in robust and interpretable low-dimensional represen-
tations. While the proposed graph neural networks architecture operates
directly on the graph structure of the protein and thereby regularizes the
latent representation in a physicallymeaningful way, Gaussian processes
variational autoencoders preserve the Markovianity of the input data in
the low-dimensional representation. Here, the concept of similarity is
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used in a different but complementary way: instead of measuring struc-
tural similarity among dynamical observables, the covariance kernel in
Gaussian processes defines a temporal similarity among conformations
of the protein.

Correlation-Based Feature Selection

Conceptually, MoSAIC—introduced in chapter 3—aims to systematically
identify functional relationships by distinguishing collective motions
from noisy coordinates. Building on the premise that biologically mean-
ingful dynamics organize into groups of coordinates that follow coordi-
natedmotion, this community-based perspective represents a conceptual
advance in how we understand protein function: Rather than investigat-
ing isolated essential coordinates, we recognize that functional motion
in proteins emerges from organized networks of correlated interactions.
By analyzing the linear correlation structure among internal coordinates,
such as contact distances and dihedral angles, MoSAIC systematically
identifies groups of coordinates that describe collective motions—a crit-
ical step that facilitates both modeling and interpretation in subsequent
steps.

This approach proved particularly effective for allosteric systems, where
MoSAIC revealed that the vast majority of coordinates (often around
80% − 90%) do not contribute to the functional allosteric transition, and
only a small fraction of coordinates is relevant to describe these pro-
cesses.i Systematically removing these redundant coordinates yields sub-i This is not only observed for

T4 lysozyme, but also for vari-
ous PDZ domains in independent
works.158,224,343,344

stantial improvements in signal-to-noise ratios and hence improves sub-
sequent modeling. For folding proteins, strong inter-cluster correlations
indicate that the clusters describe different aspects of structural organiza-
tionwithin the folding process. This is in contrast to the low inter-cluster
correlation observed for allosteric systems.

As the field of biomolecular dynamics increasingly tackles larger and
more complex systems, a principled approach to feature selection be-
comes essential for extracting biologically relevant information. Rather
than blindly following variance-based or timescale-based selection crite-
ria that optimize statistically prominent but functionally irrelevant mo-
tions, MoSAIC provides a rigorous framework for identifying that mo-
tion that truly matters.

Beyond Linear Correlations

While the linear correlation coefficient has proven to be highly effective
in identifying functional relationships in one-dimensional internal coor-
dinates, it assumes that relationships manifest as linear changes between
co-linear variables. When dealing with higher-dimensional coordinates,
such as Cartesian C𝛼 coordinates, this assumption breaks down. Specifi-
cally, cancellation effects between different directional components lead
to a systematic failure of Pearson correlation: despite clear dependencies
in all spatial dimensions, the relationship is not captured.

Without assuming any specific functional form of the relationship be-
tween two variables, mutual information provides all the means to over-
come these limitations, as it captures all statistical dependencies—whether
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they arise from nonlinear relationships or involve complex directional
interactions. To address the major drawback of mutual information,
namely that it is not normalized and, therefore, difficult to interpret, we
introduced a nonparametric estimator of normalized mutual informa-
tion in chapter 4 that is scalable to large protein systems with extensive
simulation data.

Combined Methodological Framework

Having established these twomethodological frameworks for correlation
analysis, we put these complementary approaches to test whether we
can truly gain valuable insights into the complex biological mechanisms
that underlie protein function. To this end, we thoroughly investigated
the open↔closed allosteric transition in T4 lysozyme in chapter 5 and
established a complete picture that bridges the mechanistic details pro-
vided through the MoSAIC analysis with global relationships captured
by normalized mutual information: MoSAIC’s correlation-based feature
selection employed on contact distances and side-chain dihedral angles
revealed a fluctuation transition network that explains how local pertur-
bations propagate through the protein via cooperative conformational
changes. Complementing this mechanistic view, normalized mutual in-
formation captured the global relationships and revealed how the en-
tire protein responds to the allosteric transition, providing insights into
changes in rigidity and flexibility that extend beyond the scope of Mo-
SAIC’s local focus. Together, both approaches result in a comprehensive
understanding of the allosteric transition.

Physics-Informed Feature Extraction

While the correlation-based approaches were able to provide very valu-
able insights into the functional relationships between dynamical observ-
ables, they ultimately operate as feature selection methods and identify
which coordinates—or parts—of the protein exhibit strong statistical de-
pendencies at any given moment in time. From a modeling perspective,
these instantaneous similarity measures provide the essential foundation
for the understanding protein function by identifying the relevant de-
grees of freedom, but the dynamics itself—the very essence of protein
function—requires additional approaches that capture how these degrees
of freedom evolve over time. Rather than following the dynamics along
all selected coordinates individually, we typically seek to construct dy-
namical models such as Markov state models, which provide a coarse-
grained description of the temporal evolution of the system. Unfortu-
nately, the curse of dimensionality prevents the direct construction of
these models in the high-dimensional feature space but necessitates re-
ducing the number of dimensions to a level where reliable density esti-
mation becomes feasible, and conformational substates can be defined in
a meaningful way.

To preserve the essential physics of the system in the low-dimensional
representation, we, therefore, developed two novel physics-informed fea-
ture extraction methods in chapter 6 that combine the representational
power of deep learning with physical constraints. By designing a graph



106 7 Conclusion and Outlook

neural network autoencoder that directly operates on the graph struc-
ture of the protein, we obtain robust latent representations that are able
to capture far more details in the complex free energy landscapes than
traditional methods. Notably, a major advantage of the graph neural net-
work autoencoder is consistent embeddings across different hyperparam-
eters, which is typically not the case for many deep learning approaches.
In an additional step, we addressed a common fundamental limitation of
most feature extraction methods—including this graph neural network
autoencoder and principal component analysis—that they treat each time
step independently, violating the inherent sequential nature of molecu-
lar dynamics. To this end, we introduced a Gaussian process variational
autoencoder that models temporal dependencies in the data via Gaus-
sian processes. This approach not only produces latent representations
that exhibit increased Markovianity and allow for more efficient Markov
state models but also demonstrates the remarkable ability to recover im-
portant degrees of freedom that may have been lost due to erroneous
feature selection.

Outlook

Most of the research conducted during this thesis can somehow, more
and less directly, be linked to the concept similarity. While this perspec-
tive has proven to be quite fruitful in answering some questions, it has
also raised new questions that remain open for future research.

Unified Framework for Feature Extraction

The most immediate step would certainly be combining the regulariza-
tion power of the graph neural network with the Gaussian process vari-
ational autoencoder into a unified framework for physics-informed fea-
ture extraction of protein dynamics. Such a hybrid architecture would
incorporate local information transfer through the graph structure—
mimicking the physical propagation of perturbations through the protein—
while simultaneously respecting the sequential nature of molecular dy-
namics simulations. Both complementary strengths identified in this the-
sis would synergize: the hyperparameter robustness of the graph neural
network and the ability of the Gaussian process variational autoencoder
to recover lost degrees of freedom.

Causality

Another promising direction is to extend the Gaussian process to non-
time-reversible kernels. A kernel that depends not only on the time
difference between two conformations, but also on their absolute time,
would make the kernel matrices non-symmetric and break the time sym-
metry of the Gaussian process. This would potentially introduce di-
rectionality into the latent representation and might open up new av-
enues for causal inference directly in the latent space, potentially scal-
ing towards large systems. This would seamlessly connect to the non-
equilibrium nature of functional protein dynamics. While equilibrium
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simulations obey detailed balance and exhibit time-reversibility, most bi-
ologically relevant processes—including allosteric communication—are
inherently non-equilibrium processes that feature directional conforma-
tional flow.

Similarly, also the MoSAIC analysis would benefit from introducing
causal directionality. While MoSAIC identifies clusters of highly cor-
related motions, it remains an open question how these clusters com-
municate with each other. A systematic understanding of inter-cluster
communication would be particularly relevant to the understanding of
allosteric pathways. This would require moving from purely instanta-
neous similarity measures to time-lagged asymmetric measures, such as,
e.g., transfer entropy.345
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Supporting Information for
Chapter 3 A

A.1 Optimization of Clustering Parameters

In the case of the simple model of a correlation matrix (Sec. 3.2.2), we
by design know the ground truth of the clusters. The matrix is available
at our homepage.i Hence, we can calculate the V-measure according i See https://www.moldyn.uni-

freiburg.de/software.html.to243

𝑉 = 2ℎ𝑐
ℎ + 𝑐 , (A.1)

where 𝑐 is completeness and ℎ homogeneity, defined as

𝑐 =
⎧{
⎨{⎩

1 if 𝐻(𝐾, 𝐶) = 0
1 − 𝐻(𝐶|𝐾)

𝐻(𝐾) else
(A.2)

and

ℎ =
⎧{
⎨{⎩

1 if 𝐻(𝐶, 𝐾) = 0
1 − 𝐻(𝐶|𝐾)

𝐻(𝐶) else . (A.3)

Here 𝐶 is the set of ground truth (compare Fig. 3.8 in the main paper),
and 𝐾 is the set of the resulting clusters. 𝐻(𝐾, 𝐶) is the joint entropy and
𝐻(𝐾|𝐶) the conditional entropy of the resulting cluster partition given
the ground truth.243 The results for all possible clustering parameters
can be found in Fig. A.1.

Usually however, we do not know the ground truth. In this case, we can
use the so-called silhouette method as a heuristic.203 For each feature
𝑖 ∈ 𝐶𝐼 belonging to cluster 𝐶𝐼 we can define the mean distance between
𝑖 and all other features belonging to the same cluster by

𝑎𝑖 = 1
|𝐶𝐼 | − 1 ∑

𝑗∈𝐶𝐼
𝑗≠𝑖

𝑑𝑖𝑗 , (A.4)

and its average distance to its nearest neighbor cluster

𝑏𝑖 = min
𝐽≠𝐼

1
|𝐶𝐽 | ∑

𝑗∈𝐶𝐽

𝑑𝑖𝑗 . (A.5)

Therewith, the silhouette coefficient can be defined for all 𝑀 features
by

𝑆𝐶 = ⟨𝑠𝑖⟩𝑖∈𝑀 , (A.6)

https://www.moldyn.uni-freiburg.de/software.html
https://www.moldyn.uni-freiburg.de/software.html
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Figure A.1 | Comparison of the performance of Leiden/CPM, Leiden/modularity, complete-linkage and 𝑘-medoids clustering, using
the silhouette method [Eq. (A.6)] and the V-measure [Eq. (A.1)]. The resulting parameters are 𝛾 = 0.35 for Leiden/CPM, 𝑘 = 4 for
Leiden/modularity, 𝛾 = 0.15 for the complete linkage clustering and 𝑘 = 13 for 𝑘−medoids. Figure reprinted from Ref. 1. Copyright ©
(2022) The Authors.

where the contribution of each feature 𝑖 is defined by

𝑠𝑖 =

⎧{{
⎨{{⎩

1 − 𝑎𝑖
𝑏𝑖

if 𝑎𝑖 < 𝑏𝑖

0 if 𝑎𝑖 = 𝑏𝑖
𝑏𝑖
𝑎𝑖

− 1 if 𝑎𝑖 > 𝑏𝑖 .
(A.7)

In Fig. A.1 we study the effect of changing the clustering parameters
on the silhouette coefficient. Comparing it to the previous results of V-
measure we find similar results. E.g., when the latter is minimal also the
silhouette coefficient is minimal. Nevertheless, we find a slight shift of
the maxima. Hence, we advise to use the silhouette method only as a
guide to find a first estimate on the clustering parameter, but not neces-
sarily as a way to determine the final clustering parameters.
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A.2 Results

A.2.1 Linear vs. Nonlinear Correlation Measures
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Figure A.2 | Comparison of the nonlinear correlations 𝐼geom., 𝐼joint, 𝐼js, and 𝐼gy to the absolute Pearson coefficient |𝜌| for HP35 and,T4L.
Figure reprinted from Ref. 1. Copyright © (2022) The Authors.
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A.2.2 Clustering of T4L
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Figure A.3 | (a) Clustering the 402 contact distances of T4L using Leiden/CPM, Leiden/modularity, complete-linkage and 𝑘-medoids
with optimized parameters according to silhouette score. (b) Description of all clusters in Fig. 3.9 with more than 5 coordinates. Figure
reprinted from Ref. 1. Copyright © (2022) The Authors.
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A.2.3 Clustering of HP35
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Figure A.4 | Clustering the 53 contact distances of HP35 using Leiden/CPM, Leiden/modularity, complete-linkage and 𝑘-medoids with
optimized parameters according to silhouette score. Where the resulting clusters are visualized by their corresponding (top) correlation
matrix and (bottom) contact map. Bottom: Description of all clusters in Fig. 3.10 with more than two coordinates. Figure reprinted from
Ref. 1. Copyright © (2022) The Authors.

A.2.4 Displacement of a C10-Trimer
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Figure A.5 | MSD and the Euclidean distance between initial and current position of one of the C10-trimer (both in terms of the COM
coordinate).
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B.1 Computation of the Canonical
Correlation Coefficient

Numerically, it is more efficient to compute the canonical correlation us-
ing covariance matrices rather than solving for the projection operators
𝑨 and 𝑩 and their eigenvalues.286 Relying on only the covariance matri-
ces, the approach described here avoids the computationally intensive
eigendecomposition step.346

For standardized coordinates 𝛿𝛼𝑖 = (𝛼𝑖−⟨𝛼𝑖⟩)
√⟨(𝛼𝑖−⟨𝛼𝑖⟩)2⟩

, 𝛼 = 𝑥, 𝑦, 𝑧, 𝜌C can be

computed as

𝜌C = √ 1
3 tr(𝑅), (B.1)

where 𝑅 is constructed from the correlation matrices

𝑅 = 𝑅−1
11 𝑅12𝑅−1

22 𝑅21, (B.2)

and 𝑅𝑖𝑗 can be calculated as

𝑅𝑛𝑚 =
⎛⎜⎜⎜⎜
⎝

⟨𝛿𝑥𝑛𝛿𝑥𝑚⟩ ⟨𝛿𝑥𝑛𝛿𝑦𝑚⟩ ⟨𝛿𝑥𝑛𝛿𝑧𝑚⟩
⟨𝛿𝑦𝑛𝛿𝑥𝑚⟩ ⟨𝛿𝑦𝑛𝛿𝑦𝑚⟩ ⟨𝛿𝑦𝑛𝛿𝑧𝑚⟩
⟨𝛿𝑧𝑛𝛿𝑥𝑚⟩ ⟨𝛿𝑧𝑛𝛿𝑦𝑚⟩ ⟨𝛿𝑧𝑛𝛿𝑧𝑚⟩

⎞⎟⎟⎟⎟
⎠

. (B.3)

Here, 𝑛, 𝑚 ∈ {1, 2} denote the sets of variables 1 and 2, that is, the Carte-
sian coordinates of two C𝛼-atoms.

Figure B.1 | The same example system as shown in Fig. 4.1, but with canonical coordinates. CCA now rightfully captures the correlation
between the two particles, which is 1 in all three dimensions.
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C.1 Contact Based Analysis

C.1.1 MoSAIC Clustering Results

Tab. C.1 lists the coordinates contained in the clusters resulting from the
MoSAIC analysis of T4L in Sec. 5.1.1. The constant Potts model with a
resultion parameter of 𝛾 = 0.5 was used and clusters containing less than
10 coordinates attributed to the noise cluster.

Cluster Coordinates
1 𝑑4,60, 𝑑4,63, 𝑑4,13, 𝑑4,29, 𝑑4,72, 𝑑22,137, 𝑑4,64, 𝑑20,142, 𝑑8,67, 𝑑8,68

𝑑22,141, 𝑑21,141, 𝑑2,64, 𝑑7,71, 𝑑1,64, 𝑑4,71, 𝑑30,145, 𝑑21,142, 𝑑5,60
𝑑7,12, 𝑑8,64, 𝑑20,145, 𝑑4,68, 𝑑8,13, 𝑑3,67, 𝜒4, 𝑑5,64, 𝑑24,105, 𝑑8,12,
𝑑29,64, 𝜒104, 𝑑11,20, 𝑑2,67, 𝑑11,30

2 𝑑10,101, 𝑑6,98, 𝑑6,97, 𝑑9,161, 𝑑6,94, 𝑑9,160, 𝑑10,149, 𝑑10,105, 𝑑9,158,
𝑑10,145, 𝑑6,152, 𝑑9,148, 𝑑6,101, 𝑑3,100

3 𝑑20,24, 𝑑20,25, 𝑑18,22, 𝑑22,26, 𝑑14,20, 𝑑14,21, 𝑑22,30, 𝑑20,32, 𝑑20,26
𝜒20, 𝑑11,22

4 𝑑36,42, 𝑑25,34, 𝑑36,45, 𝑑24,34, 𝑑34,38, 𝑑34,41, 𝑑34,42, 𝑑37,41, 𝑑23,34
𝑑35,45

Table C.1 | Inter-residue distances and
first side-chain dihedral angles within
clusters found by MoSAIC, sorted by
their average correlation within the clus-
ter.

Figure C.1 | The clusters 2-4 of the
MoSAIC analysis of T4L with a resolu-
tion parameter of 𝛾 = 0.5: cluster 2 in
cyan, cluster 3 in yellow and cluster 4 in
green. The corresponding coordinates in
the clusters are listed in Tab. C.1.
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Table C.2 | List of 43 inter-residue
contacts that mediate the open↔closed
transition of T4L: (Top:) 20 highly cor-
related contacts that are most important
for the open-closed transition as they
are highly correlated ⟨|𝜌|⟩C1 in the Mo-
SAIC[1] analysis of cluster 1 and fea-
ture a high change in contact proba-
bility Δ𝑝 = |𝑝open − 𝑝closed |. (Middle):
12 contacts, that are also highly cor-
related, but exhibit contact probability
changes Δ𝑝C ≤ 0.3. (Bottom): 11 con-
tacts that feature a high contact prob-
ability change Δ𝑝C ≥ 0.3, but are
not significantly correlated to the cordi-
nates describing the open-closed transi-
tion ⟨|𝜌|⟩C1 ≤ 0.5. Table reprinted from
Ref. 3. Copyright © (2024) Authors.

Contacts 𝑝open 𝑝closed Δ𝑝 ⟨|𝜌|⟩C1
𝑑4,60 0.94 0.00 0.94 0.82
𝑑4,63 0.92 0.00 0.92 0.81
𝑑4,13 0.91 0.00 0.91 0.81
𝑑4,29 0.96 0.00 0.96 0.78
𝑑22,137 0.00 0.89 0.88 0.77
𝑑4,64 1.00 0.06 0.93 0.76
𝑑8,67 0.00 0.96 0.96 0.76
𝑑22,141 0.00 0.83 0.83 0.76
𝑑21,141 0.00 0.80 0.80 0.76
𝑑2,64 0.52 0.00 0.52 0.76
𝑑7,71 0.01 0.97 0.96 0.74
𝑑4,71 0.00 0.92 0.92 0.72
𝑑21,142 0.00 0.59 0.59 0.71
𝑑7,12 1.00 0.17 0.82 0.70
𝑑8,64 0.00 0.84 0.84 0.69
𝑑4,68 0.00 0.84 0.84 0.66
𝑑8,13 0.97 0.21 0.76 0.65
𝑑3,67 0.98 0.13 0.85 0.64
𝑑8,12 1.00 0.26 0.73 0.62
𝑑11,30 0.26 0.92 0.66 0.57
𝑑4,72 0.00 0.12 0.12 0.77
𝑑20,142 0.00 0.08 0.08 0.77
𝑑8,68 0.00 0.05 0.05 0.76
𝑑1,64 0.05 0.00 0.05 0.72
𝑑30,145 0.00 0.05 0.05 0.72
𝑑5,60 0.15 0.00 0.15 0.71
𝑑20,145 0.00 0.09 0.09 0.70
𝑑5,64 0.04 0.00 0.04 0.64
𝑑24,105 0.00 0.08 0.08 0.63
𝑑29,64 0.00 0.12 0.12 0.60
𝑑11,20 0.03 0.26 0.24 0.58
𝑑2,67 0.03 0.00 0.03 0.58
𝑑75,88 0.85 0.31 0.54 0.48
𝑑11,18 0.17 0.85 0.68 0.46
𝑑3,75 0.00 0.32 0.32 0.45
𝑑10,104 0.00 0.35 0.35 0.42
𝑑7,100 0.12 0.60 0.47 0.38
𝑑29,104 0.58 0.98 0.40 0.38
𝑑84,103 0.26 0.81 0.56 0.37
𝑑31,69 0.44 0.07 0.37 0.34
𝑑104,145 0.18 0.52 0.34 0.29
𝑑14,20 0.36 0.02 0.34 0.21
𝑑81,108 0.53 0.84 0.30 0.13

C.1.2 Functional Coordinates in Cluster 1

Table C.3 | Verified functional contacts
in cluster 1 arranged starting from the
open end of the mouth region towards
the hinge region. sc denotes contacts in
the side-chain while bb stands for con-
tacts in the backbone.

Distance Type
𝑑20,145 salt bridge
𝑑22,141 h-bond sc
𝑑22,137 salt bridge
𝑑21,142 hydrophobic
𝑑11,30 hydrophobic
𝑑20,26 hydrophobic
𝑑30,145 hydrophobic
𝑑5,60 salt bridge
𝑑4,64 hydrophobic

Distance Type
𝑑4,71 hydrophobic
𝑑4,60 hydrophobic
𝑑2,64 h-bond sc
𝑑7,71 hydrophobic
𝑑7,12 h-bond bb
𝑑8,13 hydrophobic
𝑑8,64 salt bridge
𝑑4,13 hydrophobic
𝑑4,29 hydrophobic
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Figure C.2 | Time evolution of the nine
selected coordinates of cluster 1 of the
MoSAIC analysis. Shown are two tran-
sitions from open→closed and two from
closed→open.
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Figure C.3 | T4L structural tethers
based on salt bridges, showing helix 1/C-
terminal domain connection in red inset.
A salt bridge complex between Asp10,
Glu11, and Arginines 145 and 148 teth-
ers helix 1 to the C domain. While the
salt bridge of Arg52 and Glu62 strength-
ens the connection between helix 3 and
the N domain, Arg80 and Glu108 do so
between helix 3 and the C domain. The
salt bridge between Asp72 and Arg76
strengthens helix 3 above the kink in-
duced by Phe67. Glu64 switches be-
tween a hydrogen bond with Asn2 in the
mouth open state and a salt bridge with
Arg8 in the mouth closed state to stabi-
lize the respective orientations of helix 1
in respect to helix 3.
Reprinted with kind permission from
Ref. 2. Copyright © (2022) The Authors.

Figure C.4 | Estimation of the barrier heights of the two-dimensional (upper panel) and six-dimensional (lower panel) free energy
landscape of T4L, obtained for some representative open→closed (on the left) and closed→open (on the right) transitions. Shown are
the local free energy estimates for each time step as gray dots, their time average as blue line (Gaussian filter applied), the opening
coordinate 𝑥 as yellow line (without units) and the locking coordinate 𝑝 as cyan line (without units as well). The gray windows indicate
the time intervals used for averaging over all transitions in order to estimate the barrier heights. Adapted with minor changes from
Ref. 2. Copyright © (2022) The Authors.
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C.2 Cartesian Coordinates Analysis

C.2.1 Definition of Open and Closed Conformations

Figure C.5 | Classification of the 50 𝜇s T4L trajectory into open (orange) and closed (blue) conformational states. (Left) Time series of
the locking distance 𝑝 = 𝑑4,60 between residues 4 and 60. The cyan line shows the running average obtained through Gaussian filtering.
Based on the maximum barrier height in the free energy profile at 𝑝 = 0.7 nm (dashed gray line), we used this value as a threshold to
discriminate between open (𝑝 > 0.7 nm) and closed (𝑝 ≤ 0.7 nm) conformations. Short sequences that remained in one state for less
than 5ns were discarded to avoid misclassifications due to noise (gray areas). (Right) Free energy profile Δ𝐺(𝑝) derived from the locking
distance distribution, showing the barrier separating the two conformational states.

C.2.2 Local vs. Global Correlation Fitting
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Figure C.6 | Comparison of the relative differences between the local and the global fitting procedure for T4L. Shown is the joint
probability distribution of the linear correlation coefficient difference Δ|𝜌| = |𝜌closed|−|𝜌open | computed using a local and global alignment
procedure. In the local fitting procedure, the collective rotation and translation effects were eliminated by executing a Root Mean Square
Deviation (RMSD) fit to the structure featuring theminimal average RMSD concerning all other frames within each distinct conformation
(open and closed). Conversely, in the global fitting approach, the frame characterized by the minimum average RMSD relative to the
complete trajectory was employed.



124 C Supporting Information for Chapter 5

C.2.3 Cartesian Similarity Matrices of T4L
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Figure C.7 | Analysis of directional components (𝑥, 𝑦, 𝑧) of linear correlation for T4 lysozyme C𝛼-atoms. Some discrepancy between the
linear Pearson correlation and NMI can be explained by cancellation effects between the directional components 𝜌𝑥 (a), 𝜌𝑦 (b), and 𝜌𝑧
(c). Focusing e.g. on the correlation between 𝛼6 and 𝛼8 helices, we note a large different between ∣𝜌∣ and 𝐼N in the figs. 5.9a and 5.13a in
the main text. While these regions show positive correlation in the 𝑥-direction and negative correlations in the 𝑦- and 𝑧-directions, the
opposing signs lead to cancellation in the scalar Pearson coefficient, effectively masking the true correlation that is properly captured
by NMI. Adapted with minor changes from Ref. 3. Copyright © (2024) Authors.
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Figure C.8 | Canonical correlation matrix capturing the linear correlation between the canonical coordinates computed from Cartesian
C𝛼-atoms of the 50 𝜇s trajectory of T4L.98

C.2.4 Rigidity Analysis

Figure C.9 | The root-mean-square-
fluctuation (RMSF) √⟨(𝒙𝑖 − ⟨𝒙𝑖⟩)2⟩ as a
function for every C𝛼-atom in T4L. The
RMSF was calculated for both the closed
and open conformation.While the lower
part of T4L (𝛼1 − 𝛼2) shows a larger dif-
ference in RMSF in both conformations,
the secondary structures within the up-
per part seem to be more stable. This is
especially the case for the 𝛼4 and 𝛼10 he-
lices. Colors of the bars indicating the 𝛼-
helices according to the structure shown
in Fig. 5.2. Adapted with minor changes
from Ref. 3. Copyright © (2024) Authors.
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D.1 Self-Attention Graph Pooling

Self-attention graph pooling315,316 (SAGPool) is a method for pooling and
downsizing graphs in a way that graph topology is preferably preserved.
SAGPool computes attention scores317 for each node in the graph based
on its node features and the graph topology. The attention scores 𝒁 ∈
ℝ𝑁res , where 𝑁res is the number of residues in the protein/graph, are
computed as315

𝒁 = 𝜎 (𝑫̃−1/2𝑨̃𝑫̃−1/2𝑿Θatt) . (D.1)

𝑨̃ ∈ ℝ𝑁res×𝑁res denotes the adjacency matrix with self-connections, i.e.
𝑨̃ = 𝑨 + 𝑰𝑁res

. 𝑫̃ ∈ ℝ𝑁res×𝑁res is the degree matrix of 𝑨̃, and 𝑿 ∈ ℝ𝑁res×𝐹

is the node feature matrix with 𝐹-dimensional features (which, in our
case, are the 𝜙, 𝜓-dihedral angles). Θatt ∈ ℝ𝐹×1 is the only learnable
parameter in the SAGPool layer. 𝜎(⋅) is a nonlinear activation function,
typically the tanh function.

𝑿Θatt computes every residue’s 𝐹-dimensional feature vector into a scalar
value, which indicates the unweighted importance score. The learnable
parameter Θatt can be thought of as a trainable filter that selects the
most relevant combinations of the 𝐹-dimensional features. In our case,
Θatt might learn that residues with a specific (𝜙, 𝜓)-angle conformation
deserve greater ”attention” than others.

In the next step, the topology of the graph is taken into account via
the adjacency matrix 𝑨̃. To avoid the dominance of a few highly con-
nected nodes, the degree matrix 𝑫̃ is used to normalize the adjacency
matrix 𝑫̃−1/2𝑨̃𝑫̃−1/2. This ensures that information from low-degree
residues gets amplified (=̂ this information carries more weight) while
information from high-degree residues is dampened. Effectively, each
edge weight between nodes 𝑢 and 𝑣 in the adjacency matrix becomes
1/√degree𝑢 × degree𝑣, guaranteeing a balanced information exchange
where neither highly connected nor low-degree residues dominate the
attention scoring. Multiplying this normalized adjacencymatrixwith the
projected features 𝑫̃−1/2𝑨̃𝑫̃−1/2𝑿Θatt, we make sure that each residue’s
importance score is influenced by its neighborhood, meaning that a
residue with a modest score, which is connected to several highly im-
portant neighbors, will receive a boosted score. In contrast, a residue
with a high importance score, which is rather isolated, might get a lower
score. Finally, the sigmoid activation function 𝜎(⋅) introduces nonlinear-
ity and ensures that the final (weighted) attention scores are bounded
between 0 and 1.

Once we have computed attention scores for each residue, only the top
𝑘% residues with the highest scores are retained, where 𝑘 is a hyperpa-
rameter. Downsizing the graph using attention scores makes sure that
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the most structurally important elements and their relationships in the
graph are retained.

D.2 Estimation of the Inducing Points

Identifying the time points in a time trace where the system undergoes
significant changes, such as, e.g., conformational transitions in MD data,
is crucial for analyzing its dynamics. In order to reliably estimate these
time points in an automated fashion, we employ a change point detec-
tion algorithm.324 The Pruned Exact Linear Time323 (PELT) algorithm ef-
fectively detects significant changes in the time traces of the system by
minimizing the following cost function using dynamic programming:

𝐹(𝑡) = min
𝜏<𝑡

[𝐹(𝜏) + 𝐶(x𝜏+1∶𝑡) + 𝛽] (D.2)

Here, 𝐹(𝑡) denotes the optimal partitioning up to time 𝑡, x1∶𝑇 = (x1, … ,xT)
is the (multi-dimensional and ordered) trajectory, 𝐶(x𝜏+1∶𝑡) a cost func-
tion measuring the homogeneity of x within the segment 𝜏 + 1 till 𝑡,
and 𝛽 is a penalty term preventing over-segmentation. This approach
automatically identifies time points when significant changes (i.e., con-
formational changes) occur.

D.2.1 T4L MoSAIC Cluster 4

In order to identify the collective switching events in the coordinates
contained in MoSAIC cluster 4 (compare Sec. 5.1.1), we apply the PELT
algorithm to the first PCA projection 𝑧1 of the corresponding coordinates.
As shown in Fig. D.1, the PELT algorithm identified 𝑚 = 9 transitions in
𝑧1, which are shown as gray vertical lines.

Figure D.1 | Inducing Points identified
by the PELT algorithm (gray vertical
lines), capturing major switching events
in MoSAIC cluster 4.

D.2.2 Toy Model

As we rely on sparse approximations for the latent GP regression, we
need to estimate 𝑚 inducing points. In order to obtain representative
time points for the dynamics of the toy model, we again apply the PELT
algorithm. By relying only on data from the 𝑥𝑦−plane, where states
3 and 4 overlap, we mimic a scenario in real MD simulations analysis
where important degrees of freedom may be hidden or overlooked in
post-simulation analysis. The PELT algorithm identified 𝑚 = 89 induc-
ing points, shown as gray vertical lines in the time traces in Fig. D.2.
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Figure D.2 | Inducing Points identified
by the PELT algorithm (gray dashed ver-
tical lines), capturing major transitions
between the metastable states. Addi-
tional time points were added at the mid-
point of each segment in order to reflect
themetastable conformation aswell (yel-
low vertical lines). Adapted with minor
changes from Ref. 4.

D.2.3 T4L Embeddings by PCA and GNN-AE

PCA

Fig. D.3 shows the two-dimensional PCA projection of the 556 C𝛼 dis-
tances of T4L, colored by the locking distance 𝑑4,60. Furthermore, we
show one representative transition of MoSAIC cluster 4 (at 14 𝜇s, see
Fig. D.1), where the protein switches between the two metastable open
sub-states. The node’s positions are averaged over 0.5ns, and their color
indicates the evolving time around the transition.

Figure D.3 | Two-dimensional PCA pro-
jection of the 556 C𝛼 distances of T4L;
the data points are colored by the lock-
ing distance 𝑑4,60. Using the identified
switching events of MoSAIC cluster 4,
we visualize one representative transi-
tion, where the nodes position are a
temporal averaged over 0.5ns and their
color represent the evolving time.

GNN-AE

To assess whether the differences between PCA and GNN-AE are physi-
cally meaningful, we employed HDBSCAN201 to identify the frames be-
longing to some distinct free energy basins. We manually selected a
subset of them and colored the corresponding areas in Fig. D.4 accord-
ingly.
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To evaluate how well these clusters resolve the conformational differ-
ences of T4L, we leveraged the four MoSAIC clusters previously identi-
fied in Sec. 5.1.1. For eachMoSAIC cluster, we extracted its first principal
component (where 𝑖 represents the 𝑖-th MoSAIC cluster) to represent a
representative coordinate for the dominant dynamics within that clus-
ter. Even though the first PCs of each cluster caption only a part of the
dynamics contained within each MoSAIC cluster—accounting for 72.7%
(cluster 1), 46.4% (cluster 2), 59.8% (cluster 3), and 64.2% (cluster 4) of
the total variance—they should still provide a good approximation of the
respective dynamics.

In Fig. D.5, we show the free energy along these PCs in the lower diago-
nal as well as how theHDBSCAN clusters are distributed along these PCs
in the upper diagonal. The conformational analysis reveals a distinct sep-
aration between the identified basins. Considering the open basin of T4L
with clusters C1-C3, and C6, it is evident that C6 and C3 are clearly distin-
guishable from each other and from C1 and C2. While C1 and C2 show
substantial overlap in most of the projections, they indicate to capture
slightly different regions in the PC(2)

1 -PC(3)
1 projection. For the closed

basin of T4L consisting of clusters C4, C5, and C7, C4 is clearly distinct
from C5 and C7 along PC(4)

1 , where C5 and C7 are partly overlapping.

Although this analysis examines only the first principal components of
each MoSAIC cluster, the observed separation of the HDBSCAN clusters
provides strong evidence for the physical meaningfulness of the GNN-
AE representation. Some clusters may exhibit more distinct separation
in higher-order PCs or in different parts of the protein not captured by
the four MoSAIC clusters analyzed here.

Figure D.4 | Evaluation of the two-
dimensional latent space of the GNN-AE,
trained on the 556 C𝛼 distances of T4L.
HDBSCAN201 was used to identify seven
distinct free energy basins.
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Figure D.5 | Evaluation of GNN-AE basins separation along principal components derived from our MoSAIC analysis. Lower diagonal
shows free energy landscapes projected onto pairs of principal components PC(𝑖)

1 from MoSAIC cluster 𝑖. Upper diagonal displays the
distribution of the seven HDBSCAN clusters (C1-C7) of Fig. D.4 in the same PC spaces, with diagonal elements showing one-dimensional
free energy profiles.
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D.2.4 GNN-AE Architecture Specifications

For the GNN-AE architecture we used for T4L (Sec. 6.1.3), we used the
following parameters:

▶ Input Features:
• Node features: 4D (backbone dihedral angles 𝜙, 𝜓), repre-
sented in the 2D vector space ℝ2 as, e.g., 𝜙 ↦ [sin(𝜙), cos(𝜙)].
This avoids discontinuities at the boundaries 360∘ and 0∘.150

• Edge features: 1D (inverse C𝛼 distances)
• Graph size: 164 nodes, 556 edges

▶ Encoder Layers:
• EdgeAttention module: 1D → 80D → 1D weighted edges
• GATConv: 4D → 80D with multi-head attention347

• SAGPooling: Graph coarsening with attention-based node se-
lection315

• LeakyReLU activation + BatchNorm1D(80D)
• Set2Set aggregation: 80D → 160D with 5 processing steps318

• Linear projection: 160D → 2D latent space

▶ Decoder Layers:
• Linear: 2D → 50D
• Linear: 50D → 556D (reconstructed C𝛼 distances)
• Dropout: 𝑝 = 0.5 for regularization

▶ Training:
• Mean Squared Error (MSE) loss for reconstruction
• Learning rate: 1 × 10−4 using Adam optimizer175

• trained for 100 epochs (converged)

Batch normalization (BatchNorm1D) is used to standardize the input be-
tween the different layers by re-centering them around zero and rescal-
ing the data to unit variance. This allows faster training while increas-
ing stability as it reduces the risk of vanishing or exploding gradients.348

Dropout sets a fraction of the nodes to zero during training to zero with
probability 𝑝, which helps to avoid overfitting as it forces the model to
learn patterns across multiple nodes and edges rather than relying on
specific single ones.349

D.2.5 PyRosetta Structure Generation Validation

Figure D.6 | PyRosetta structure gener-
ation of T4L fromGNN-AE C𝛼-distances
restraints.

PyRosetta328 was used to compute the three-dimensional structure of
proteins from harmonic constraints resulting from the GNN-AE recon-
struction. As a benchmark, we computed the 556 C𝛼-distances from a
closed reference structure shown in bright green and used the open con-
formation (dark green) as a starting point for PyRosetta. The resulting
structure generated by PyRosetta applying the harmonic constraints is
shown in yellow and closely matches the closed reference structure in
green.
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D.3 Derivation of the Sparse GP-VAE Loss
Function

Following refs. 133, 332, 333, 339, 340, 341, we summarize the derivation
of the GP-VAE loss function in Eq. (6.5). For the sake of brevity, we will
use the notation ⟨⋅⟩𝑞(𝒛|𝒙,𝑡) instead of ⟨⋅⟩𝒛∼𝑞(𝒛|𝒙,𝑡) when referring to expec-
tations over distributions to improve readability.

Our starting point is Eq. (6.4):

ℒ = ⟨ ln 𝑝(𝒙|𝒛)⟩𝒛∼𝑞(𝒛|𝒙) − 𝛽𝐷kl [𝑞(𝒛|𝒙, 𝑡) ∥ 𝑝(𝒛|𝑡)] ,

of which we will first focus on the Kullback-Leibler (KL) divergence
term

𝐷kl [𝑞(𝒛|𝒙, 𝑡) ∥ 𝑝(𝒛|𝑡)] = ⟨ ln 𝑞(𝒛|𝒙, 𝑡)
𝑝(𝒛|𝑡) ⟩

𝑞(𝒛|𝒙,𝑡)
= −⟨ ln 𝑝(𝒛|𝑡)

𝑞(𝒛|𝒙, 𝑡) ⟩
𝑞(𝒛|𝒙,𝑡)

,

where both the approximate posterior 𝑞(𝒛|𝒙, 𝑡) and the prior 𝑝(𝒛|𝑡) =
GP [0, 𝑘𝜈(𝑡, 𝑡′)] are time-dependent in contrast to the classical VAE. To
make the inference tractable, we follow the variational approximation
introduced by Pearce,341 which factorizes the posterior into

𝑞(𝒛|𝒙, 𝑡) = 𝑝(𝒛|𝑡) ̃𝑞( ̃𝒛|𝒙)
𝑍(𝒙, 𝑡) .

This factorization separates the temporal GP prior 𝑝(𝒛|𝑡) from the data-
driven part ̃𝑞( ̃𝒛|𝒙) = 𝒩( ̃𝝁, 𝝈̃2), which remains identical to the classical
VAE encoder, where ̃𝝁 = 𝑓𝜇[𝑓𝜽(𝒙)] and 𝝈̃2 = 𝑓𝜎 [𝑓𝜽(𝒙)] are learned by
neural networks. The normalization constant 𝑍(𝒙, 𝑡) = ∫ d ̃𝒛 𝑝(𝒛|𝑡) ̃𝑞( ̃𝒛|𝒙)i i both 𝒛 and ̃𝒛 denote the same la-

tent embedding, however we notation-
ally distinguish between the purely data-
driven ̃𝒛 as in classical VAEs and the
time-dependent posterior 𝒛 resulting
from the GP regularization.

ensures that the posterior distribution 𝑞(𝒛|𝒙, 𝑡) is a valid probability dis-
tribution. Substituting this factorization into the KL term, we obtain

𝐷kl [𝑞(𝒛|𝒙, 𝑡) ∥ 𝑝(𝒛|𝑡)] = −⟨ ln 𝑝(𝒛|𝑡)𝑍(𝒙, 𝑡)
𝑝(𝒛|𝑡) ̃𝑞( ̃𝒛|𝒙) ⟩

𝑞(𝒛|𝒙,𝑡)

= ⟨ ln ̃𝑞( ̃𝒛|𝒙)⟩𝑞(𝒛|𝒙,𝑡) − ln𝑍(𝒙, 𝑡),

which we can use to rewrite our starting point equation as

ℒ = ⟨ ln 𝑝(𝒙|𝒛)⟩𝑞(𝒛|𝒙)⏟⏟⏟⏟⏟⏟⏟
reconstruction

−𝛽[ ⟨ ln ̃𝑞( ̃𝒛|𝒙)⟩𝑞(𝒛|𝒙,𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟
GP regularization

− ln𝑍(𝒙, 𝑡)⏟⏟⏟⏟⏟
normalization

]. (D.3)

The direct computation of Eq. (D.3) is still computationally prohibitive,
since both the expectation ⟨ ln ̃𝑞( ̃𝒛|𝒙)⟩𝑞(𝒛|𝒙,𝑡) and the normalization con-
stant 𝑍(𝒙, 𝑡) involve operations on the full kernel matrix that scale as
𝒪(𝑁3). Therefore, it is necessary to use sparse approximations for the
GP,339,340 which employ a reduced set of 𝑚 ≪ 𝑁 inducing points with
vectors 𝑼 = [𝒖1, … , 𝒖𝑚] ∈ ℝ𝑚 that are representative of the data.ii ii To estimate appropriate inducing

points, we used change point detection
to identify the time points in which
the system undergoes significant confor-
mational changes (see Sec. D.2). In or-
der to make them more representative,
we also added midpoints to reflect the
metastable states.

The premise here is that a GP regression based on these inducing points
𝒇𝑚 ≡ 𝑓 (𝑼) ∼ 𝒩(𝑓 (𝑼)|𝝁, 𝑨) faithfully approximates the full GP regres-
sion 𝒇𝑁 . Here, 𝑝(𝒇𝑚) = 𝒩(𝒇𝑚|0, 𝑲𝑚𝑚) denotes the GP prior over the in-
ducing points, while 𝑞(𝒇𝑚|𝒙, 𝑡) = 𝒩(𝒇𝑚|𝝁, 𝑨) denotes the variational pos-
terior distribution over these same inducing points, with 𝝁 and 𝑨 be-
ing learnable variational parameters. Based on Titsias work,339 Jazbec et
al. suggested to compute these (intermediate) variational quantities at
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the 𝑚 inducing points as stochastic estimates for each latent dimension
𝑙 ∈ {1, … , 𝐿} and for each batch 𝑏:133

𝝁𝑙
𝑏 = 𝑁

𝑏 𝑲𝑚𝑚 (𝜮𝑙
𝑏)−1 𝑲𝑚𝑏diag (𝝈̃−2

𝑏,𝑙 ) ̃𝝁𝑙
𝑏,

𝑨𝑙
𝑏 = 𝑲𝑚𝑚 (𝜮𝑙

𝑏)−1 𝑲𝑚𝑚,

where 𝜮𝑏
𝑙 is given as

𝜮𝑙
𝑏 = 𝑲𝑚𝑚 + 𝑁

𝑏 𝑲𝑚𝑏diag (𝝈̃−2
𝑏,𝑙 ) 𝑲𝑏𝑚.

In this expression, 𝑲𝑚𝑏 = 𝑘𝜈,𝑙(𝑼, 𝒕𝑏) ∈ ℝ𝑚×𝑏 represents the kernel ma-
trix computed between the 𝑚 inducing points 𝑼 and the 𝑏 data points 𝒕𝑏
within current the batch. Importantly, these estimators converge to the
true values for very large batch sizes 𝑏 → 𝑁. Following Titsias and Hens-
man et al., we obtain the final posterior distribution parameters in form
of the posterior mean 𝒎 and covariance 𝑩 of the GP latent embedding at
all data points in the batch 𝑏

𝒎𝑙
𝑏 = 𝑁

𝑏 𝑲𝑏𝑚 (𝜮𝑙
𝑏)−1 𝑲𝑚𝑏diag (𝝈̃−2

𝑏,𝑙 ) ̃𝝁𝑙
𝑏,

𝑩𝑙
𝑏 = diag(𝑲𝑏𝑏 − 𝑲𝑏𝑚𝑲−1

𝑚𝑚𝑲𝑚𝑏 + 𝑲𝑏𝑚 (𝜮𝑙
𝑏)−1 𝑲𝑚𝑏) .

Since we assumed independence across latent dimensions, we can char-
acterize the posterior distribution of the latent embedding

𝑞(𝒛|𝒙, 𝑡) =
𝐿

∏
𝑙=1

𝑞(𝒛𝑙|𝒙, 𝑡) = 𝒩(𝒎, 𝑩). (D.4)

This allows us to calculate the term ⟨ ln ̃𝑞( ̃𝒛|𝒙)⟩𝑞(𝒛|𝒙,𝑡) in Eq. (D.3) as

⟨ ln ̃𝑞( ̃𝒛|𝒙)⟩𝑞(𝒛|𝒙,𝑡) = ∫ d𝑧𝒩(𝒎, 𝑩) ln𝒩( ̃𝝁, 𝝈̃2)

= CE [𝒩(𝒎, 𝑩)‖𝒩( ̃𝝁, 𝝈̃2)]

The cross-entropy (CE) between two Gaussian distributions can be ana-
lytically computed as333

CE [𝒩(𝒎, 𝑩)‖𝒩( ̃𝝁, 𝝈̃2)] = 1
2 {𝐿 ln 2𝜋 + ln det diag(𝝈̃2)

+(𝒎 − ̃𝝁)⊤diag(𝝈̃−2)(𝒎 − ̃𝝁)
+tr [diag(𝑩)diag(𝝈̃−2)]} , (D.5)

of which we can compute all quantities: ̃𝝁 and 𝝈̃2 are the variational
parameters learned by the classical VAE encoder and 𝒎 and 𝑩 are the
posterior mean and covariance of the GP latent embedding at all data
points.

Lastly, the normalization term 𝑍(𝒙, 𝑡) remains to be calculated. Recall
from the factorization, that the direct calculation of 𝑍(𝒙, 𝑡) = ∫ d ̃𝒛 𝑝(𝒛|𝑡) ̃𝑞( ̃𝒛|𝒙)
is intractable, since it involves the full kernel matrix in 𝑝(𝒛|𝑡). Following
Hensman et al.,340 this intractability can be circumvented by construct-
ing an Evidence Lower BOund (ELBO) that 1.) serves as a tractable lower
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bound to ln𝑍(𝒙, 𝑡) and 2.) can be computed using mini-batches

ln𝑍(𝒙, 𝑡) ≥ ℒH =
𝑁

∑
𝑖=1

⎧{
⎨{⎩
ln𝒩 (𝜇̃𝑖 ∣ 𝒌𝑖𝑲−1

𝑚𝑚𝝁, 𝜎̃2
𝑖 ) − 1

2𝜎̃2
𝑖

[ ̃𝑘𝑖𝑖 + Tr(𝑨𝜦𝑖)]
⎫}
⎬}⎭

− 𝐷kl [𝑞(𝒇𝑚|𝒙, 𝑡) ∥ 𝑝(𝒇𝑚)] .

Here, 𝒌𝑖 represents the 𝑖-th row of 𝑲𝑁𝑚, ̃𝑘𝑖𝑖 denotes the 𝑖-th diagonal
element of 𝑲𝑁𝑁 − 𝑲𝑁𝑚𝑲−1

𝑚𝑚𝑲𝑚𝑁 , and 𝜦𝑖 = 𝑲−1
𝑚𝑚𝒌𝑖𝒌⊤

𝑖 𝑲−1
𝑚𝑚. 𝑝(𝒇𝑚) and

𝑞(𝒇𝑚|𝒙, 𝑡) are the sparse GP prior and posterior over the inducing points
and were defined above. This ELBO contains a KL divergence term be-
tween the variational posterior and GP prior over the inducing variables.
To compute this tractably, we evaluate:

𝐷kl [𝑞(𝒇𝑚|𝒙, 𝑡) ∥ 𝑝(𝒇𝑚)] = ⟨ln 𝑞(𝒇𝑚|𝒙, 𝑡)
𝑝(𝒇𝑚) ⟩

𝑞(𝒇𝑚 |𝒙,𝑡)
(D.6)

= ⟨ln𝒩(𝒇𝑚|𝝁, 𝑨)⟩𝑞(⋅) − ⟨ln𝒩(𝒇𝑚|0, 𝑲𝑚𝑚)⟩𝑞(⋅) .

Using the standard expression for the log-probability of a Gaussian dis-
tribution, we can compute the first term as

⟨ln𝒩(𝒇𝑚|𝝁, 𝑨)⟩𝑞(⋅) = ⟨− 1
2 [(𝒇𝑚 − 𝝁)⊤𝑨−1(𝒇𝑚 − 𝝁) + ln det𝑨 + 𝑚 ln 2𝜋]⟩

𝑞(⋅)

= − 1
2 [𝑚 + ln det𝑨 + 𝑚 ln 2𝜋] . (D.7)

Similarly, we can simplify the second term:

⟨ln𝒩(𝒇𝑚|0, 𝑲𝑚𝑚)⟩𝑞(⋅) = ⟨− 1
2 (𝒇 ⊤

𝑚 𝑲−1
𝑚𝑚𝒇𝑚 + ln det𝑲𝑚𝑚 + 𝑚 ln 2𝜋)⟩

𝑞(⋅)
,

= − 1
2 [tr(𝑲−1

𝑚𝑚𝑨) + 𝝁⊤𝑲−1
𝑚𝑚𝝁 + ln det𝑲𝑚𝑚 + 𝑚 ln 2𝜋] ,

(D.8)

where we used the expectation of the quadratic form of a Gaussian. Sub-
stituting Eq. (D.7) and Eq. (D.8) back into Eq. (D.6), we obtain

𝐷kl [𝑞(𝒇𝑚|𝒙, 𝑡) ∥ 𝑝(𝒇𝑚)] = ⟨ln𝒩(𝒇𝑚|𝝁, 𝑨)⟩𝑞(𝒇𝑚) − ⟨ln𝒩(𝒇𝑚|0, 𝑲𝑚𝑚)⟩𝑞(𝒇𝑚)

= 1
2 [−𝑚 + tr(𝑲−1

𝑚𝑚𝑨) + 𝝁⊤𝑲−1
𝑚𝑚𝝁 + ln

det𝑲𝑚𝑚
det𝑨 ] .

(D.9)

Having derived the KL divergence term analytically, we can now return
to the Hensman ELBO and reformulate it relying only on computable
quantities:

ℒH =
𝑁

∑
𝑖=1

⎧{
⎨{⎩
ln𝒩 (𝜇̃𝑖 ∣ 𝒌𝑖𝑲−1

𝑚𝑚𝝁, 𝜎̃2
𝑖 ) − 1

2𝜎̃2
𝑖

[ ̃𝑘𝑖𝑖 + Tr(𝑨𝜦𝑖)]
⎫}
⎬}⎭

− 1
2 [−𝑚 + tr(𝑲−1

𝑚𝑚𝑨) + 𝝁⊤𝑲−1
𝑚𝑚𝝁 + ln

det𝑲𝑚𝑚
det𝑨 ] , (D.10)

where we have substituted our derived expression for the KL divergence
from Eq. (D.9).
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This completes the derivation of all necessary components. We can now
return to Eq. (D.3) and combine the three tractable terms we derived

⋅ reconstruction term (unchanged from standard VAE)
⋅ GP regularization: Cross-entropy term between sparse GP poste-
rior and VAE encoder [Eq. (D.5)]

⋅ normalization: Hensman ELBO ℒH [Eq. (D.10)]

into the final loss function, serving as a lower bound to the log evidence
of the sparse GP-VAE model

⇒ ℒGP-VAE ≡ ⟨ln 𝑝(𝒙|𝒛)⟩𝑞(𝒛|𝒙) − 𝛽 [CE [𝒩(𝒎, 𝑩)‖𝒩( ̃𝝁, 𝝈̃2)] − ℒH] .

This is the result presented in Eq. (6.5) in the main text.

D.4 Parameters for the GP-VAE

For the GP-VAE toy-model experiments, we implemented the model us-
ing PyTorch10 with the following architecture and hyperparameters:

▶ Neural Network Architecture:

• network with hidden dimensions 10-32-64-32-10

▶ Training configuration:

• Optimizer: AdamW algorithm176

• Learning rate: 10−5

• Weight decay: 10−2

• Batch size: 5000
• Training epochs: 100

▶ Model Hyperparameters:

• KL div. weight 𝛽: 20
• Matérn kernel smoothness parameter 𝜈: 3/2
• Matérn kernel length scale 𝑙: 7.5 ⋅ 104

• 𝑚 = 89 inducing points (see Sec. D.2)

D.5 Most Probable Path Coarse Graining

To systematically coarse grain the microstates into a few macrostates,
we employed a hierarchical lumping procedure based on metastability
and transition probabilities, namely the most probable path (MPP) algo-
rithm.121 MPP progressively hierarchically combines microstates into
larger macrostates by increasing a minimum metastability threshold
𝑄min from 0 to 1. Once a microstate 𝑖 has a metastability 𝑇𝑖𝑖 < 𝑄min,
this microstate is merged with another (branch of) microstate(s) 𝑗 that
has the highest transition probability max𝑗 𝑇𝑖→𝑗(𝜏).

This lumping procedure can be visualized as a dendrogram, which shows
at whichmetastability twomicrostates aremerged. In Fig. D.7 a, we show
the dendrogram for the lumping of the microstates of our analytical toy
model (see Sec. 6.4.3) in the full three-dimensional space and in b for the
GP-VAE embedding space.
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Figure D.7 | (a) Hierarchical cluster-
ing of microstates in the full three-
dimensional space and (b) correspond-
ing lumping in the GP-VAE embedding
space.
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